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TECHNICAL REPORT R-54

FACTORS THAT AFFECT OPERATIONAL RELIABILITY OF TURBOJET

ENGINES I

CHAPTER I

OBJECTIVES

gv BENJAMIN ])INKIq, L

This report discusses the problem of obtaining

high operational reliahility for turbojet engines.

By high olierational reliability is meant opera-

tion with low i)robahility of flight accident. High

operational reliability is easier to achieve and

oper,ltinff costs are reduced with engine eonll)O-
ill'hiS (if increased life. Tlie considerations in-

volved in increashi_ conili/ineiit life are briefly
discussed.

I ligh operational relialiiliiy can lie obtained by

l)l'Ol)Pr practices in ellgilie design, lllanllfaotllre_

ttiffht ol)eralion , alid iiillilltenance based on all

ll('Olll'ate knowledge of the characteristics of the

eiigine aiid its conilioneills. Studies of these
('haracleristios have been nlade lit lhe Lewis lab-

(tl'alorv, This l'el)(ll't reviews the pertinent char-

a('teristics (if the enffine and its eoniponents and

(lis('usses in the light of lhis inforniation lhe

kinds of action lleCessiil'V to inii)i'ove operational

reliability.

As it slarting point, lhe faihlre data on let
enffines in niilitarv service were exanlined. These

data served mainly to reveal the components that

were the principal sources of difficulty, and they

provided only a rouffh indication of their modes

of failure and failure limes. A study was also

made of flight accident records to determine the

severity (if the (llierational difficulties that re-

suited front failure (if these various componenls.
Tile service rec(n'ds revealed tile faihire of a

large variety of coml)(inenis. S()nle of these coni-

Supersedes NA('A Re_oal-ch Memorandum E55H02 by Lewis

I)OlielilS have 11o lillllS/lal s|ress or wear problelns

aim with i)roper design should last indefinitely.

Other conll)Olients ]lave finite lives because of

weai'_ fatigue by vii)ration and therlnal cycling,

and creel). Turlline buckets, turbine disks, t)ear-

iiigs, and conibuslor liners are exainples of parts

with thiile lives. The lives (if these eonq|)onents

in niaiiv of l]ie Clil'relit nlilitary engines are eoii-

sideralily siiorler than desired times to overhaul.

l "nlirediclahle failures (if sonic of the ooinl)onents

t'OlliC fl'Olll envirol/illent;ll callseS such as foreign-

(ibject daillagP. F(treign-objeet dalnllge ranges

froni ilnnaedi'lte destruction of the engine to

nicking (if the ('onlliressor and turbine blades

whi(:]l can result in reduction in their lives.

Slmrlened life (if eoml)onenls in the hot end of

lhe, engine results from overheating or over-

stressing ils a result of nialfunctioning of the

aul(inmiie control or bad handling pritctice by

the liihii.

If the wear-out or failure times could be

;iccuraiely specified, high operational reliabil-

ity could be achieved even with components of

short life by a proper repl,lcement schedule.

tIowever, the normal scatter in material 1)roper -

ties and differences in severity (if the operational

histories (If individual engines place part of the

t)m'(leil (if lirevelitiilff failure in flight on serviee-

insliection lirocedures. Ilence, the schedulinff (if

repl'leelnenls and of inspections is part of the

l)r(we(lure for inilll'ovin _ ol)er'diolml relialiiliiv.

Laborntory Staff, 1956.
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These inspection and replacement procedures

must be derived from a knowledge of the failure

mechanisms of the components. This derivation
will be discussed.

Increased reliability can be obtained at a sac-

riiice ill performance or an increase in cost.

Examples of methods of increasing reliability

at a sacrifice in thrust per unit weight are:

(1) Strengthening the engine (e.g., through

the use of a centrifugal compressor in place of

the axial compressor and more rugged critical

components)

(2) Reducing operating temperature and stress

Examples of methods of increasing reliability

at the expense of greater initial cost or greater

maintenance cost are, respectively:

(1) Increasing development effort and quality
control

(2) Increasing frequency of inspection and re-

placement of parts

The finding of the best compromise between

reliability, performance, and cost is a special

study for each engine and each application. For

example, speciiic tl_rust is given more importance

relative to these other factors in the fighter than

in the transport application. This type of analy-

sis will not be atlempted. Itowever, it is hoped

lha! the insight presented into the characteris-

tics of the engine and its components will pro-

vide guidance for these special analyses.

l:nfortumttcly, all llle data needed for the dis-

cussion of the operational reliability problem
were not available. The additional information

needed will be pointed out.

In summary therefore, an attempt will be made

to provide the following:

(1) An analysis of stalistical data on failure

of engine components in service to reveal (a)
lhe most critical engine components, their modes

of filih,rc, and failure times; and (b) the tend-

ency of the component to cause engine failure

and flight accident

(2) A review of the theory and experimental

data relating to the engine and its components

that Jeveal (a) the causes of component fail-

ures, (b) the manner in which the components

fail, (c) the factors that influence failure time

and tt,e relation between performance and failure

time, (d) the phenomena that indicate incipient

failure and the grace time between incipient and

final :failure, and (e) the effect of the compo-

nent failure on the engine

(3) A discussion of the measures required to

improve operational reliability, covering the fol-

lowing activities :

(a) Design and manufacture

(b) Inspections

(c) Replacements

(d) Maintenance practices

(e) Flight operational practices

(4) Additional information needed

The records reveal failure of a large number

of miscellaneous engine components. However,

this report covers only components which are

pressed by lurbojet performance requirements to

operate at conditions where uncertainty exis(s

regar_ting the design factors and the behavior of

mater als. Because foreign-object damage and

difficulties arising from inadequate or defective

eontr(,1 can greatly reduce component life, these

topics are also included.
Th_ NASA is indebted for s(atistical data and

valua])le discussion to personnel at Wright Air

Devel)pment Center, the Air Materiel Comnmnd,

Oklal onto City Air Materiel Are% the Directo-

rate of Flight Safety, the Bureau of Aeronautics,
and t]m aircraft engine industries.

In >rder to avoid proprietary ditficulties, en-

gines and aircraft are designated by a code

systm _.



CHAPTER II

FAILURE STATISTICS

By FLOYD I_. GARRETT and G. M. AULT

SUMMARY

,5'c_'vlce records of turbojet e?_gi'ne+' in Air Force

military service were sampled a,nd studied. Al-

though the records were not designed for this

pu._7_ose, con,s'iderable insight was yu:ned as to the

cause., a_d frequv_wy of h+rboiet-e_gi_e failure.

I)_tta required for an improved fulure study are
suggested.

The ti_e to orerhaul of the average turbojet
e_(qi._ws of three _odel,_ for which considerable

ex/)erie_zee h+ts been obta:_ed vaned with e_wb_e

model and application from 105 to 760 hour,_'.

Most of the e_+_i_ws were .near the low side of

this harM. The _o.s.t freque_t (ind eo,_si.ste?+t

ca_._.c o.f o+,erka_d was foreiff_-objeet damage,

.from 2G lo 50 percc_+t o.f the eiWi_ws be:_y oc,r-
h_l_ded for thL_" r_,_'o_.

l:allu?cs :n /he hot section (:.e.. i_ the corn-

bus/or a_+d turb]_e ,w'etio_,sQ are a free,tent co|use

for e_+gi_e r(mov_tl from (deer,|ft. Al,_o. ku'ge

per:e_W,_yex o.f :h_ c_+yhtcs goi_Lq through field

repair _d ma.)(n' or( rhaul require rel)kmem(_t
:tt+_[ repn:r of :]_exe eomt)o_wntx.

]'+o'i/o'_'(:,' Of sollte el_f/il_e ])(o'tx ]l(//_e ('dttx_+d

flight +weide_ts. h_ 195,L 205 aceide_/,_ _,er( due

to ,':e/-enffizwf_tiluf::,_'ma/.fu_wtlom The re-

_'po_+,_.ibh_eo?_po._e/_twas d_termi,_wdfor 182. In

dee,'e_,_i_+gorder o.f.freTue_'y.the,we+eerc ./ud-

conch'el failure (6S a:eide_d,_), eomprc,_sor failure
i_wh_di? W .ioreif/_+-obj_::_t damage (5,_ acclde_W+'),

:urh:m_ 5t+o:,'e{f,_ilure('IGacehle_t._.),lurhi_+etl:._.:,_

f+dhtre (14 aecide_t,,'),mai,n bearh_:/.iaihtre(I0

ac.id+::d,_,),:t:_:/fi]_a/lffm:.+ee/la:_:'o_:,;:',:u._'e,_(20

ac:'id._dsfrom 16 differe_t eau.es). O.f the 54

:w:ide_+/sresul/;nyfrom :om/:re,_sorfailure o+nlff

o_+e i_rolved a,ee_+h':.fuf/alcompre,s,,_or,al/hou:/h

the fl/lh_gthne accumulated .fo.re_fli_eshavh_g

.en/rifu:/:_/:'On_l_r:'._._or._.w_._,.bou/ /he,.wtm. .._.

for e_ffh_e._b::vbLqa,-,'hdrompre,_._,ors.

INTRODUCTION

Service records of turbojet engines were stud-

ied in order to obtain insight into the causes of

engine failure. Since the most extensive use of

these engines has been by the U.S. Air Force,

the reeor(ls of this organizt_tion were examined
in some detail.

This paper Smnlnarizes the results of this study

an(l indicates, where possible, the time to major

overlmnl obtained on these engines, the, engine

components that m()st commonly failed, and the

operating lives of some of the components. In

ad(lition, accident re('or(ls for jel-l)owere([ .dr-

craft for the year 1953 were reviewed to indi-

cate COml)(mcnt faihu'es that have I)een important
causes of ,_ecidents. Since flat records availal)le

were not (lesi/ne<| sl)ecitlc'tlly for the study of

engine relial)ility, commems are offere(1 as to the
records (lesired to facilitate futm'e studies such

as described herein. Two appendixes arc in-

eluded to (les(q'ibe in _'eneral terms the actuarial

meth,)d <)f (hqevmi,_in_z engi,w lift, aml llu, lw()

_'mwval lawm of failure, "('ham'e'" aml "w(,nr-_mt.'"
The sl:nisli(.al dala Iwrein art, for ena'im,s ()f

(,l_h'v design thai lmvt, I)(,en _)l)eraled in the mili-

l_lrv services. SNJJJl'ietl! ol)er_lil) _" exoeriem'e is

n()t vet availnl)le for latt, v ' "• ( I1_'111(':'-;1o I)t, rn_it such

:t slmlv. It is inm('em':tle to extval)olate all lit('

iml)lic:nhm_ of lhese (Inta <_, older engim,: to tlw

l)ert'<)vun:tn('t, _t' engines of the l:_t(,>t _h,si<,#n aml

l<) o])el'llt[()tls ill ()t[it'r stq'vit't's, SIIC[I ;IS ill I'()lll-

mev_.ial tv:tn_p<)rt. TIw later dt,si_ns have t'<_l'-

r('('t('(l many f:_ults <_l' lit(, <,l<ler <h,si_ns: how-

('V(']', lhey also mill })e t,xl)et'le(l to possess [nil]is

w't to hi, discmm'ed, l_,v I,ringin,.z 1o lit.zht all

l)ossibh , infm'm:tti<m on ::ever:t] en_ilu,S for wl,i('h

cmtsideral_lc operation Ires heel+ exl)evielwe(1, it is
h(q,e_l that the later &,_i.,_,'ns may. avoid tl,e faults

<,I+the <,bier th,si_'im.

3
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In addition, for reasons given herein, lhis sla-

iistical study is limited :is far as possil)le to

engines lhat had never been previously over-

hauled and, therefore, to enlzines of relatively

sh(wi operaling t inies. For seine eoniponents,

paNi,'ularly lhe turbine disk, hmg-tinw operation

('an l;'eexpected to iutr()du('e faihu'es not revealed

hereill. Ill l]lese i,ases, IllOl'e tll/(ll fire |ll'eSelite(l

in lhe other parts of this l'el)ort lhat discuss the

individual eOlnl)ollelll s.

The en_'ines :lllll aircraft are ('o(led. For air-

craft, ihe letter l¢ iil(li_':ltt,s honlller air(.rafl, (!

indicates oal'go aircraft, and F indicates fi_hler
nirev:l ft.

SOURCES OF DATA

The Air Force records from which data were

availahh, are shown in lable I. The [irsl cohunn

lists the lilies of lhe records, 'ul(l the third ('ol-
ulnn laliulates infornlation obtained froni these

records for this study. Since the records were
eolh,(qed by the Air F(n'('e for I)Url)oses oilier

than tilt, type of analysis presented in this l'eltorl,
tllel'e :ll't' SOlile lhuitntions: lhese l/re listed in the

f()lii'lli cohunn. The time periods sludied are

ilidicilied in lht, lllsl cohunn. The tirsl source is

till, Aircl':lt'l Enghle l,il'e Exlieclaney Exli(isllre

Tahle, liul;'lished niolillllv. This record 7ires the

Oiml'alili _' (inie since nianllfilctlll'e o1' since lasl

(iverhltul _)t' all enKilles installed ill Air F(;'l'Ce

])]alleS. Eacli en_hte is iloi listed sel)ar,ltely ;

])lit, l':llher, lhe ellSilleS (;'f ea('}l lilodel are _2'rOlll)ell

lille 1()- _>l' 2()-]iOllr inlerv'/ls of flyin7 lillle. This
i'eclii'(l '.lls_;' Kives t]le lllllll]_Pr of h(;'lll'S t]()'0.'ll elllth

liloliih alid l]ie iiuniher of elt_hies removed for

ni:iiOl" and ilihi(;'r overiiau]. Fl'oln lhese dat:t the

Air Force cah'lllall,s i]ie eXlieeled Iillle to ()ver-

]ialll (lib' t'Xl)eCtllllcy) t'l;'l" eaeli eliffille lilo(|el.

Flir the pi'eseiil slu_|v Olle ]iniiialion is lhat lrhi:

l'e(.i;'l'(l (lo0s llOt (lislin_uis}l h0lween iille_A'" (llOt

l;'l'evhmsly f)verhl/llied) illl/i liVt, l'hiillled ensines.

The second SOllrl'e is tile [']nsine Technical

()l'del' ('onllililuwe and llisiory Record, ('(;'lll-

lllOll]V <.:llh,d tile 6()1{. This is essentially ll.ll

eilsiiw ]o K l]ull slays wiih ihe eli_ilie (hroll_h-

o11i iis life. The i'ecorll is ilsel| io liOle coin-

plhuwe wilh Technicii] ()rders, Iiult is, to nole

whelhl,r l't,e(minlende(l en;ilie iilotlificalioliS have

t;'eell lllalie P.Illl it) llOl(' whlql lhe el/Sille Was

ll'llllsl'el'l'e(l o1' livei'hauled. Sin('0 il is not sl)e-

f;itil'allv ri,llVii'e,1 tlull all 1):ll'l 0]iill/_'es lie lioiell,

it is lot l)ossillle 1o follow tile life of the enable

c(_ilill(ilieliiS fi'()ili ihis ree(ird: lherefore, lhe

(;O]:I's were llot used ill the present study.

Tile Engine I{elnoval ill" I_()ss ]{el)ori (Ell),

which is published inoiilhIv, (almlaies f()r each

eli_illl, relilOvell froin an ail'l)ialie (lii:il is not

iniine(liately rehistalled in ilie Sallli! 1;'(;'sili(;'li in

lhe s.illle airplane) lhe cililse for eiiiffille i'o-

lliOva], the o])eratiilg' time on lhe ell_ille; lllld

w]lether the enshie is "lleW" or has tlel!li previ-

Oll._].V over]lailie(i. Tile ('allSe f(ll' relilOVii] is

based eli the illforllliilioll :lvililill)le to (he pilol
and the crew chief or lhle otlleer who orders the

rOlllOVa|. And, Sill('(, lhe t, liKill(_ is ollly ]mrtialiy

(tisass!,nll)led and hlsl)ected, ]iniitalhms exist. For

exainlde, lln engine nl:l 3" have I)een l'ein(;'ved I)e-

CallSe of excessive villrlilion; it would lie inipor-

hllit t,)kiiow wilelher ihe vil;'l'ati(;'li resuile(1 lei'oin

a fati_ued tie_ll'illg Ill" :l failed ('(;'llll)resslir t)lilde,
bUt tl ll.t will not lm known until lile engine is

disass, mll)]ed. Also, if II ])al'l is chilliKed while

lhe el_gine is niounled hi lhe airl)huie (;'l' if lilt,

ell_iile is renlove(1, rel)i/ired , :illtl iliiliiediatelv l't,-

histlll]ed in lhe Sallle posilion in llie Sallle 'lir-

l)]:ule_ ill)ER nolalion would Ill, liill(|(,.

1Vh ql 1/11 ell_']ne is l'l,litOved l;'(,C:lllSe relmil'S are

needet[, it C_/ll eitlwr l)i, repaired in Ill(, tiehl (,r

sliipl)(d to 1/11 ovei'}iilli] dt,1;'ot. T]ie Ail' Fol'('e

]laS il o|)era|iOll all extensive l)rosi'illii (;,2 tiehl

"liiiilO_" tel)airs" for jel elisines lhai 1)eriililS Jill

lioi se..lhm coniponents (eonilmstors, nozzle di-

al)lira.rills > disks, lill_| lmckt'i._) and iurlthie-s]illfi

Ilearil_ffs to 1)e rel>]aced in l]ie tlehl ral]ler l]iali

rl,qllir!ii_ l]ie eii_iiies to lie seilt Io lii'ijor ()Vel'-

hail]. I)]sliss(,nil)ly of ihl, COllilll't,SSOl' i'l)(lll' Io

I'(,lllllc_ faih, d l)al'lS was ll(It |)el'lllillel] in t}ll'

tleld rt t]le tinie of ihese daill. Therefore, field

I'(!I)llil' data elll|)hasize hoi-secliOll |)al'l rel)hl0e-

liiOliiS wherelis dalll _'ivin_" l'OllSOliS for niaior

over]is ul lend io enlph:lsize difliculi h,s wilh]n l}le

COliil)r._ssoI', ili(']ll(|ili_ fOl'(,i_'ll-()]_jl,('l (laliia_e. alld

withh t]10 li('('ess()l' 3, drive section of lhe i,ii_'ill(,.

No sil/]e SOlll'('e of iI;/l:l 7i\'('S 1]l(! ('()llll)l('h' Slol'V,

|nforiialioll eli i'e]l:iirs uul(lt, iu t]ie th,hl are

avai]ii )]e froni ('1) 1711sal ist'aclol'v |{(,]lol'ls (I'R),

Jill(| (_) II special SIIlillil:lrv (it' Fit'hl M-ainte-

lialiCe and l_el)ail'.

A lrR is written al lhe oplion of field persoli-

llel w]ien '1 dittieulty is t'(mnd wilh 'ill engine or

eli_ill( ('Olill)ollell(. Sinoe :t I;I{ is Wl'i(leli al the



2

,-.2 cs_

k2 ._.

FACTOI/N THAT AFFI.:('T OPEIiATIONAI2 I_[':I, IA|tII2I'I"I" O1" TUI/BO.IET EN(;1NI,'S

!

i

.'t-

;7

_C

" O

C

b-

:/: .:5.i
;:., _:.

,_ --=

< .,

-- .=

:.r

W.

k ;.._

"L

22

Z
,-2

2.2

i z
•

..2

b-

f_

,.,..,

D

_.=.

2

-2=

'2

7.̧

_.2

.=.

7-

_m

52

12

_2

M

!±.

_5

5

i

t:



6 TECHNICAL REPORT R--54--NATIONAL AERONAU';ICS AND SPACE ADMINISTRATION

discretion of field personnel, there is no assur-

alice that one will be written each time a repair

or part change is made. UR's, therefore, can-

not be said to give a complete picture of a diffi-

culty. Generally, however, they do give a quali-

tative picture of problems that occur. Such a

reI)ort gives a description of the unsatisfactory

condition encountered and the operating hours
on the engine since "new" or since the last over-

haul. The operating time on a part that may

have t)een previously changed several times is

not given. The UR's are sumnmrized monthly,
and the summary is published as 't Statistical

Smmnary of I)efieiencies Reported I)y ITnsatis-
factory Reports. This form tabulates for each

engine model the number of times for lhe month

and accmnulaled f(u' tim year that a parlieular

diflicully has been reported. The SllllUnal'v is ill
very l)road terms (e.g., munl)er of "internal fail-

ures," "vibration difllcullies"). This rel)m'( does

no( imlica(e en,,z'ilm operaling times.
._tllll|her SOlll'('e of field nmintenance and re-

pair dala is a special Smnmary of Field Main-
|ellallCe alld Rel)air made 'lvailal)le by OCAMA.

This talmlali,,n indicates ihe per('eniage of ea,']l

en,.,ine model /,)in K through the th.hl tel)air pro-

gram that has a parli('ular 1)art rel)l.wed. It does

not indicate the ()l)eratinff time on lira engines,

or whether tim engines life 11ev( tlr ]|ave 1)reel -
()uslv h(,en overhauled or rel)aired.

When an (,ngine goes (hr()u_h major overhaul,

a l)isasseml,h- h_sl)(,(.tion lh, p()rl (I)IR) is wri(-

|(,n. Tiffs (h,s(')'il)es, in (he ()l)inion of (he in-

spe('(()l', (he l)a)'(i(.ular flay( faillu'e or other rea-

son ((,.,/., f()reiffn-()l)je('t thrum/el (hat caused the
en:.z'i),, 1() require ov(,rhaul 'm(l (h,s('ribes in con-

sideral)le detail all (he I)art rCl)]a('ements nllt(le

f(w each en/ine. Cuw'en(ly, (his is (he most eom-

l)h'(e ()f all engine re(',)r(Is. The major limitation
is tirol, ('ven for all ell_ille llever l)revi,msly over-

]muh'(l, i( is n()t ('er(ain (ha( a l)art r(,l)hu'e(l in

()vevl)aul has n()( also l)(,en l)r(wi()usly rcl)lace(l

in tl.. fiehl. Tlms, the ()l)erali)i,_ time on any

I):)) ") ('an)it)( l)e s(a(e(l with certainty. E)ig'ines

A aml l_ ()vevhauled at (-)('AMA ha(1 l))'evi()us
min()r repairs m)le(l on the l)IR's insofar 'is (he

(lala were avail:dde (o tile insl)ec(()r from (h(,

engine GOlFs. Minor repair data are not noted

on l)IR's for (! engines. The I)IR's are sum-

lnarized monlhly, and the summary is iml)lishe(1

as a Statistical Summa W of Disassembly In-

spectim Reports. This summary tabulates for

each engine model the number of times for the

month and accumulated for the year that a par-

titular part failure, environment (e.g., foreign

objec(), or operating condition (e.g., overtem-

perature) has caused an engine to require major

or miqor overhaul. The summary separates new
engines from those previously overhauled. The

engin,,s of each model are grouped on the basis

of re: son for overhaul, and the average operat-
ing time since manufacture or the last overhaul

is given for each of these _roul)s.

The remaining sections of this paper describe

the resulls obtained from a study of several of

these sour(:es for various nmdels of three engines.

For ea('l_ source used, data covering 't COml)lete
:;-m(m(h l)eriod were studied as indicated in tal)le

I. The same time l)eriod could not be used for
all sources becquse the data were not, available.

1)I (h_ <,'ise of ])IR's, the time l>eriod represents
the fine l)(,riod ,)f overhaul. Some of (he en-
gines had l)een removed from service several

moral s before overhaul. The I)IR's were not

availal)le lo p(,rmi( 7rOUl)in _ (m the l)asis of tim(:

(>t' rermval l't'()m service, "d(lmu_h i( mi_hl lmve
l)e(m l)referal)le (o (h) so.

The Air Fo)'ee revised its methods of' ('olh,('t-

ing (Ida on part failures anti rel)laeements in

I"el)rulvy ()f I!)55 (ref. I). An troller(ant dil-

l'ere)w, in the new _yslem is (hat every part

vel)h."men( ()r r(,paiv must ))e noted on a spe('ial

l'()vm m<l s(,nt (oa central agen%'. 1Vilh these

(la(a he (rue maffni(u(le ()f par( rel)hwements
will 1)._ readily availabh,. In a(hli(i()n, wl,m an

(,n,_,in( underg()es field repair or insl,e,qion, a ])lit
will l), wriil(,n similar to that now written f,)r

m'(q'h: ul. lh.,'or(ls are (lis(msse(I more fully in

(he se,'li()n SI';I:VI('E l))l.:('()lll)._ I)FSIIlI.:I).

COMPARISON OF JET- AND RECIPROCATING-

ENGINE LIFE

The limes It)overhaul ((,ngine lives) of air-

('rafl ,.ngim,s used in military air('raft are giv(,l_

in refi re)w(, 2. 'I'() l)rovide a eru(le y:u'(Isti(q_ f,)r
measu'ing engi)m life, the limes to overlmul of

the je engines are ('Oml)'ired with the times to

overln ul of reciprocating engines of 2000 horse-

power or greater 'also in use in military service.

('on,l)arisons of (he lives of jet and recipr()(.at-

i))7 engines may no( ])e entirely fair, ])e('ause the
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engines (lo not i)erform tlie same function. The

reciprocating engines are used by the :kit" Force

to l)ower I)(nnber and cargo aircraft, whereas the

jet engines power bomber and tiglfler aircraft.

Coml)arisons of engine lives niade herein are

based on the times to overhaul detm'mined by actu-

arial computations described in references 2 and

:3 and ai)pendix B herein. For reasons described

in appendix B, engine lives are eonip,u'ed herein
on the b'/sis of the median time to overhaul ratller

l]mn the mean. The median time to overhaul,

which is the time when 50 l)ereent of the engines

of :t samph_ will ,,() t(i overlmul, is called "ihe life

of the qverage engine" :is contrasted wilh lhe

mean. whieli is the averave life.

In _eneral, the life (if the average jet engine

is :ll)lWe('iah]y less lhan lhat of lhe average re-

cil)rocalin _ entzine. This niay lie seen ill (able II,

where for the jet engines lhe life of ihe ,lverage

engine ranges froni 105 t(i 760 h(iurs, with niost
models on the low side of lrhis band. For several

mode]s of reeiln'oealing engines, lhe life of the

average engine ranges from 340 to 1140 liours_
with ninny niodels above 650 hollrs.

The cliaraeieristie shape o:f these distribution

c'lirves iS indicated l)y the siiniple oulilllla|ive fre-

quen('y distributions l)h)ited in t]glli'e 1 (see al)-

t)endix B for description of plot). Besides the

indicated differences in lives of the average en-

gine, anottier eomi)arison e'm be made by holing

the pereent'lge removed for overlmul after a liar -

tieular time period. For example, 'it lhe end of

100 hours, for tile jet engine, 31 percent of the

C-7's, 2g percent of the B 3's, and 11 percent of

Ihe A-7's would go lo overhaul; whereas, for the

100--

g

o 6o

8
E40

E 2C
8

0_

o

r I

Minor repair

Major overhu_

'.'!g.o,/
(bombeO/'

//)(carg°) i_

/ /.J

¢/;05 0,,/" Life of I. average i

//'" <[ en_ line !_edian 1

i E_gines

- Jet /

Reciproco ting_i
200 400 600 800 I000 1200 1400 1600

Operating time, hr

FtCUR_: l.---Conlt)arison of time lo overhaul of sewwal

engines on the basis of cumulative fre(lii('lley (lislril)u-

tion.

T,.%BIA,; 1[. (t()MI'AlllSON (iF ME1)IAN TIME TO

OVEIIlIAUI, F()I{ JET- AND IIECIPI/()CATING-

ENGINE AIR(!IIAFT IN MILITAI/Y SERVICI.]

]']ngine co(tl_

Turhojel:
A-6 ....
A--9__

A--10, 13 _
B -7

A 3, 4, 5

B -6, 1 I _

B -1, 2, 3, 4
:%.--7 .
B -3
B -2, 4, 5

B-10 . _
('--7 ....
( : -6._
B 8
B -9 _.

t{(!('iproc'lling :
l/ -4c.
R 4e_
R -3a
R-3b
R 4b

l{ -4b
11 -4e
]_- -4b
1{ -4e
II -3e

IL-4b
I1 -4f
11 -21)

Aircraft
(!Ol<] (J

F 4
F -4
F -4
B _2
F 2

F -3
F _3
F -2
P, -4
B -3

F 3
F -I

F 5

B-4
B -4

B2 -1
t',2 -2
tl -5
B -6
B7 2

( !3 -2
B2 -1
1_7.-1
B2 -2
(_ -1

(_3 -I
(:3-2
B l

11--2(! -- i BI 3
11 -4a_ i (' -1

11.-4,1__ i! (_-4
II-la B--8
ll-4a _ (; -2

11-4g ..... ( I-2
1/-4t)_ _ t B7 B
ll-2a _ _ _ ( I-5
1/-2(1 _ BI .2

NIIIII})[!I' (if

)Ie'tian engines ill
lillle lo service :is

overhaul (ff Febru-

(ref. 2), tit" al'V 1955
(r_4. 10)

105
110
110
120
140

150

160
22{)
240
260

270
410
440
{ill)
760

340
35{)
351/
41/{)
45O

460
460
470
470
520

680
690
74O
750
S00

800
820
850
910
920
9411

1, 1411

34
485

90
1, 143

27S

1, 213
405
527
427
275

1. 532
2, 998

254
855

5, 7S3

433
179

2, 532
375
ll2

232
SI0
795
296
901

252

2, 096
1, 162

51S
604

44

1, 899
764
S70
152
582
566

_ Froln rcf, 11.

reciprocating engim, s, ()nly 4 percent of the R-l's
and R-g's used in a ("u',m aircraft and 8 1)ereent

of lhe R-3's used in a bomber aircraft wouhl go
{o overlmul.

It should be eml)hasized that these dat<_ in-

dicale only tlie tinie to niajor overhaul. Ilt the
ease (if the jet engines, an extensive field ntinor

reliair progl'ani iS ill operation. Tlm nihmr re-

pair 1)r(igl'ani for jet and l'ecil_r(icating eli_'hlt,_

can lie coliiliared (ill :he hasis of lhe iillliiher of

534,962 .e,1 2
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removals for minor repair 1)er removal for ma-

jor overh'ml. The ratio is indicated in figure 1

and given for several other engines in figure o.
For the jet engines the mmlber of removals for

minor repair per removal for major overhaul
varies from 0.5 to 17, whereas it varies front 0

to 0.1 for the re('il)r()eating eng'incs. Front t'd_le

l[ and tigures 1 and 2, it is al)p:m'nt lhat limes

to overhaul are much slmrter fro" lhe jet engines

in SFite of the extensive jel-eugine fiehl minor

repai : program.

In addition io time to overhau], it. may be of

imervst to consider the number of removals of

the engines from aircraft f()r repair or overhaul

per lnit of flight lime. This (:Oml)aris(m is

sh(,w_l in ligure 3 (,n lhe basis of maml)m' ,,f

r(,nt(,x:tls per 10.000 hours of ttight lime. The

jets ,1)viously have ]llall 3" ]ll(,l'e l'enlovals Ill:Hi
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ihe re{'il)r(}(':{tin V engines. The removal vale
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t{) ('-5 ,iei enVin{,s in n lrainin_Z tighteP had P,07

Penl()vals pep 1(),{}()0 h{)uvs {)f fli_zht, whereas in

The same alq)licati(m anotheP model of the same

envim', lhe (' 7, had 4(; removals.

The time t(} ,}veHmul of jet {,n_ines is a func-

lion (}f tlm al}t}li,'ali{,n and {'n_ine design, 'is is

i|.li<'ale{l in tiguPe 4, where the (listvil)uli{>ns of

lime i{) overh:uil of live ]n{}(h,ls ()f lhe I¢ enffine

ave (.(mqmved. TIm h,west m{,{lian ,}v{,Phaul lime,

al.}ut 110 hours, is f(}v the P,-7 in a l)oml)ev. An-

,}iheP nl()del of lhe sam{, {ql_ine, the I_; 9, used in

anolhm" h_}iiil){,P {i_-!) hn_ al}l)Pe(qal}ly grealev

]if{, (750hvs). In fa{'l (ha_edon acluaPialdala),

_his elu.zine Ires the ](mV{'st nl{,(lhln iilne to oveP-

haul ,,t' any ,i{'l {,ng'ine fin' whi{'h dqin ave avail-
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able. Another model of tile B engine, the B-3,

used it) this same bomber aircraft (B4) has an

appreciably shorter median life (_020 hrs). An-

other interestin/point results from a COml)arison

of the B 6 and 13-11 with the B-10 engine. The

engines are similar and power essentially the same

tighter airl)hme, but lhe B 6 and t{-11 engines

having the h)wer life are equipl)ed with after-

burners and also operate more time at maximum

engine speed.

ENGINE REPAIR AND OVERHAUL DATA

CAUSES OF ENGINE REMOVAL

It is of interest to consider why engines are re-

moved from aircraft, what paris most frequently

need repair in the field, and what is repaired in
major overhaul. The causes for removal of en-

gines from aircraft are sununarized in tigure 5
for five engine models from the Engine liemoval

l_el)()rts. (More "u:CUl'ately tim figure sunmuu'izes
cau._es of engine renloval that result in in_t'dla-

tion _,f a different engine in the aircraft, sin('e

ibis is tlm only time an Ell is written.) The
stated cause rellects the information available to

the pilot and crew chief or line otlicer who orders

the r,,moval. These men have probably looked

into lhe inlet for colnI)ressor blade damage from

forei_;n objects and perhaps removed the tailcone
to examine the turbine section. Since the data

are io be later tabulated by automatic machines,

lhey are limited to a code system indicating the

reason for engine removal. If a satisfactory (:()de

letter does not exist, the ('ause for removal is

indi(':_ted with a code letler designating "other

knowq reqson, not sI)ecitled 1)y co(lB."

'l'h, statisli('s on five engine models were stud-

ted. The high marl.: on e'tch bar (maximum)

represents the model lmving the largest percentage

found for lhe specified removal cause, while the

low mark (mininmm) represents the model hav-

ing the lowest percentage of lhis remov'tl cause.

The spread for each cause is represented in tlgure

5 1)y he height of lhe eross-h'm:hed "u'ea.
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]"U;VRE 6.--(:aUS('S for engine removal by (mKi)_e mod(q (from ]']l{'s).

The distribution of reasons for removal among

the five individual engine models is shown in fig-
ure 6. One of the largest categories for every
engine model is the nmnber removed for other
known reasons not specified by code, which var-
ied between 9 and 07 l)ercent (fig. 5). The bear-
ing category rarely shows any entries. :If a
main be'_rin_ were bad, it might be more likely
noted m)der rough operation or excessire vibra-

tion, since the engine had not been disassembled

to a point where those makin_ out the engine
removal form could see the damaged bearing.

The cause of the rough opera/ion or vibration

would not be known until the engine could be
disassembled in field repair or in overhaul. The
importance of a particular component in causing

engine removals varies from engine to engine.
For exqmple, the turbine section other than
lmckeis caused o:3 percent of the remorals in
one engine, but none in another engine. This iv
indic.tied by the fact that the shaded area goes

(l()wn to the axis (fi_. 5).
Another point is that foreign-object damage is

consis(entlv a problem. At a minimum, it caused

!) l>ercent of (he removals of one engine model

:rod up 1o a maxinmm of 39 l)ercent of anoihcr
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nmlhq. ()thercau:esthat were high wereturbiue

buckets, internal failure, enffhle accessories, and

roli:2"h el)el'el ion 1,r vibral ion.

PARTS REPLACEMENTS MADE IN THE FIELD

As meutioned earlier, when an eugim, i_ re-

moved from ;m airphum for repairs, it can either

]_e ]'el);lil'ed ill l]le field ()l' sent |o nla,ior overhaul.

)k ;}-Ill()lll]l SIllllllllll'V I)f tlle field repair data is

slillWli ill lal)le 111 alld as li b;ll" Kl'ai)]i iit [iKItl'e 7,

wlih'h sllows l]ie i)ercentage of tile A, ]/, and ('

enT"hies IZOill K i]lrou_z]l tiehl rep'lh" t]iat ]iitd par-

licuhu" l):ii'l._ rel)iaced. As ineniillned pri, vious]3',

Ill lhe linle lhese thlla Wel'e colieclel[, rel)lilCt,-

ilielll o[' all ]lol-seclion paris wl/s pernlilted iit

tile field. ])isas.seinl)iy of l]ie compressor io I'e-

phtce slltlol" Vailes o1" i'olo1" blades was iiol perinil-

led, however, if It slalor Villte or rolor blade in

l iie coliil)l'essol' needed l'el)iltcinT> tile enffilie was

Selil Io iiiajOl" ovel']iilll]. Tllus, field llillili|elialtce

data enll)hasize ]lOi-seclion repairs, and major

overl all] data lelid io elllpllli.,_ize forei_ll-Ol)jel'l

dailuiTe and colii])i'essor rel)air._. The coliiiire._sor

('Oll]d lie l'eWOl'ked ill the liehl, howevei', 1o iiS{Olte

oul" nhior liiC]-:._ or denis reslilliilff fi'oiii fol'ei_rn

olljec S; illll[, till itll itVt'l'ilT"e , l_ ])el'celll of l]le l/

ellTilleS _Oilt_Z t]ll'O/17h ovel']ilill] had ('Ollillressoi's

reworked [)coalise Of foreiKli-objecl daltlage. Ill

liie laler section Piiri: ]{eplaced 'it Over|uui],

lhose paris rel)lace(t ]llq'allSe (if forei_zn-oltjeci

Ihunltge ;Ire isolated from ot]lel' ('altses, ])ut l]lese

liehl data applu'ent]v do not make lhis disthlo-

lion: i]tllS_ soliie rel)hlcenit,nls of lurllhie Imck-

els, flit eXalli[)]o_ ]iiltv ]llt\e heell ]lel'llllSe of liick_

and (ents from foreign objects "is well its fl'Olll

1week lig or fl'li¢llii'e l'esti]lilig fi'olli flttifflle or

stress i'llptllre. Also, llie rel)lacelllelit of tlll'liille

wheels ilpparenlly does llol llecesSal'i] 3" indic'lie
failure of tim disk, shlce enlire wheel ltssenllilies

are occaSiOllitlly replaced hi the tlehl, evelt lllou,_h

"I'AtILI,] 1II. -SUMMARY ()F FIELD MAI?TENAN(TE ANI) I{I,',I'AII{.

[l'l,rct,nlalZl,: obtained from 3-II)A, 1261 ]l, and 32"2C ongmes that received jet-engine fi hi maintenance ("minor repair") and were returued to servieol

l']n _[ut, nlodt.l
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11 0
o 0
0 7. 1
0 0

9. 9 ! 7.6

4 S
42. <_ 0
50 25
28. I 28. 2
43. 7 15, 6

7. _ 39. 6
4. 7 2S. 6

23. 2 4
12. 4 10. 9
34.2 8.5

25. 1 16. S

14. 3 14. 3
0 100

0 . 5O
68 12
29. 2 I

22. 3 35. ,554. 9

( !Ollll)res-

SOP rl!-

worked

1
29. S

44.4
6. 7
0

2_. 6

IS. 4

S
0

5O
9.9
9.4

10. 6
7.1

30. 3
40. 9
23. 7

19. 11

0
0
0
0
6. 3

1.3

, ('omputed by OCAMA from Form 20's RCS 2-AMC-A7. Submitted for April to J ine, 1954
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only some of the buckets have failed. The disks

are subsequently rebla(led and returned to service

ill a different engine.

These data frmn tMd relmirs show lhat many

lint-see{ion paris are being tel)laced on engines

/oin/ lhrough minor rel)air. For examl)le , 35

percent of the (' engines had wbe.el .tsseml)lies

rephu'e_[ (l)erhaps because of eilher bucket or disk

failures)_ _5 percent of lhe B engines had buck-

ets rel)laced , 55 l)el'eent of lhe (7 engines had

nozzle dial)hraxms rephu:ed or repaired, and 55

percent of the A engines required replacement

of the comtmslor imler liner. Although bearing

rephu'emenls were high. it will be pointed out
later that, because of lhe absen(.e of an a('(,urale

erilel'ion of bearing failures, the fact that a

bearing is replaced does not necessarily mean

that the bearing was bad. Also, it. is clear that

lhe life of a COmlmnent varies with engine de-

sign. For example, replacement of a eombustor

inner liner was required in 55 percent of the A

engines but in only 15 percent of the C engines.

l)ata were not available to permit association of

these replacements with operating times of the

engines.

CAUSES OF ENGINE OVERHAUL

The number of l)isasseml)ly Inspection Re-

porls available for engines being overhauled for

lhe first time in lhe 3-1nonth study period are

60-

_ 5o
c

<3

40
c

a)

c
C0

cO

5o

O_
oJ

3 20

O

a_ _o

0:

_.:.:.

'%'.

,'.'.

 !ii!i

[.&

!
L. o,

I'.'."

E-:
I-:':
_.:.:
V.'.

b,.

. i ''''_

.5 5
o 3 3

¢O I'-- t--

georino

Engine

-- E.? Ix] A
D,,

\I .'.v

'' ... H C

_:::::
Z'X ['X
"-:.2, r.'.

,.. ...
L'.' r.'.'

r.'.'

v.'. E-:
t'.'.

.... Ii!
s

-- ila

- _ ._
Combustion Turbine section

section

Fm(:UE 7.--(',omponenls replaced or repaired in the fieM (from Summary of FieM Maintenance and Repair).
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shown ill table IV. Tile fact that the engine life

varies with engine model and application (fig. 4)

means that engines shouhl not be grouped when

studying causes of overhaul and I)art failure.
Because sample sizes in some eases were so small,

a decision was made to study only those engine

models having more than 50 engines overhauled

in the study period. In addition, only new en-

gines (not previously overhauled) were studied
to minimize the uneert'dnties regarding el)crating

times on the parts. These factors limited the

study to the five engine models indicated by
asterisks in table IV.

This table also indicates for the tire engines

studied the maximum and median operating time

on the engines in overhaul. The fact that the
data are limited to engines having relatively short

operating limes must be kept in mind when draw-

ing conclusions from the data. For example, one

reason that a disk problem was not revealed by
these DIR statistics is that most of the disk fail-

ure n_eehanisms are time- or cycle-dependent, and

tile engines studied have not operated sufficiently

long for disk failures to be encountered. A bet-

ter insight into the magnitude of disk problems

e'm be gained from chapter VIII, TURBINE
I)ISKS, sin('e the authors have also reviewed

some of the statistics for engines that had one
or more overhauls and have thus accumulated

more operating time. The B-7 engine is not re-

viewed herein, because it is used in an unusually

sevele and uncommon application.

Tle cause for engine overhaul for tlve jet en-

gine_ is shown in detail in tigure 8. These data

are Jr()m the I)IR's that list, in the opinion of

the, iaspeetor, the single failed part, tile environ-

ment, or the other reason (e.g., personnel errors,

crasl_, or accident) that caused the engine to

come to overhaul. The data are based upon 'm

inspection after disassembly of the engine.

In each case the height of the shaded liar in-

die:lies the percentage of engines that were over-

hauhd because of failm'e in a particular section

of lh*. engine (reading that right ordinate scale) :

for example, 8.8 percent of the A 7 engines were

in overhaul because of failure in lhe compressor

section. The height of bars to tile left of the
shaded bar indicates tile relative distribution of

rel)hu.'ements 'unong the particular parts of the

compressor; for example, 6 percent of the A-7

engines were overhauled because of compressor

rotor 1)lade failure aim at)out 0.8 percent be-
cause {)f stator vane f'dlm'e. The left. ordinqte

st,de indicates component, faihlres as a percent-

T._.BI,I,; IX'. -NUMI_ER OF NEW ENGINE ])IR'S AVAILAI_LE F(}I_ STIrDY IN 3-M(}NTI[ SAMI'IJ': (AU(]UST

TO {)(_TOBEI{, 1953)

Maxim}ml op- Median op-
Engine Total Nol (lesi.- Minm' (,rating lime eraiin_{ tim('

nlodol lltlllll}l'P Fighlor ]loml)er lmlod ovorhmll (m ihesv en- on l]lese en-
gines in over- ] gim's in over-

haul, hr haul, hr

.x {_ '2 2 ........ 4s,{},A-7 136 l lO ..... 4 22 i lii0
i A-8 16 4 . _ 12 I

. _ (i8B -3 73 5 634 247
B -4 33 20 2 11

I B -5 7 _ (i 1 ,
: B -7 88 I 82 5 i

B -S ,I}3 .... 38 55 i -

q_-9 72 _ . 51 r 21 2_5 ] 55
_B -10 161 {,)9 _ 62 301 i 88
('-4 1 S 1 ........
('-5 ,_ S
( _-(i 40 39 1 ] - - i -

_ . ]

_(1 7 210 20(.t 1 l _S5 205
I I

• These sarnl)h,s were IlS(,ll h>r skitistical study.
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Median time on engine in overhaul, 160 hours; ]mml)er of engim,s in sami)le , 136.

]"]GU_¢E 8. -(_auses for engineoverh.ml (from l)ll{'@.

age of engines for which comi)onent failures are

the cause for overlmul; for example, failures in

the coml)ressor section of the A-7 engine repre-

sented 55 percent of the engine component causes

of overhaul but only about 8.8 percent of all

causes. If a part failed because of foreign-object
damage, the cause of overhaul was noted as

foreign-object damage and not char_ed to the

l)arlicuhtr engine t)ar(. The causes <)f overhaul

al'e summarized by seclion of the engine (e.g.,

bearings, combustor asseml)ly, etc.) for "_11 live

models in tigure 9. The most frequent reason

for engine overhaul was foreign-object damage

(var>'in_ lu'tween 2,t; aml 59 percent), the ]nini-

mum t)ein;z" hig'her than the maximum for any
ot her cause.
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Table V in(lie:lies that, in all ('a._e: where en-

_i)l('._ were ()verhaule(I bi, i.allSe ()[ foreign-ol)je(:t

damaTe , (he tl:un:tge ('ausin 7 ()verhaul was noIe(l

in the ('Oml)ress()r. The rela(ive iml)orlam'e of

an (,ngine part in ('au,_in_" overlmul varied wilh

engine (h,sigu ()r apl)li,ali()n (tiK. S and Iable V) ;

fl)r exanq)h,, Ihe (url)im, se(qi()n in (h(' A en-

(_¢illP ")VHS l[ll infrequel)l reason f()r ()V(q']llIlll_ bill[

ill I]IP 1{--:{ |lIP (lll']l]llO SP('|i()II is SP('(IIIi{ .uly to

f()r('i_n ()bje('(s.

As lhe fiehl min()r repair 1)r()gram (:()n(i)mes

)o expand, par( failure: in the engine h()( se(',-

tiou._, ._u('h as (he ('oml)usI()r as_(,ml)ly and (he

uu'l)i)m ,_(,('(i()n, will I>(, a r(,a,_()n fl)r sen(liug an

('ll_]lle i() IHaj()l' ()v('rll:H|| ('Yell ](.'_, ()fl(,'ll_ since

rel)air,_ ()f h()t-se('li()n l)ar(: will I)¢, made in the
tiehl.

PARTS REPLA('ED AT OVEI{HAUL

All l)arIs rel)la('('(l in overhaul on five models

.f jet (,nzin(,._ un(h, rz()inZ (heir Iil'._( overhaul

during a :bm(mih l)(,ri()d are ,_umnmrized in (his

_(,(qi,))_, again l)as(,(l on (hna fro,) l)IWs. Fi_-

l|l'l_ I()llll(l (Ill)I(? VI _'ive a de(ailed l)veak(lown

(), par( rel)la(:emen(._. The (hUa are summ'u'ized
l)v sec)i()u of (he engine (e.g., 1)(,aring,< (_omlms-

(()r as,_eml)ly) in figure ll. All rel)l'wemen(s

n()(('(l l)v ('()ml)Onen( in figures i()and II are :for
rea._())_: ()(her Ihan f()reign-()l)je('( (lalna_e. Very

lar_'e l)er('(')l(a_es of ,_ome paris were l'el)la('ed in

overhaul. For eXaml)h, _ fl'()m 25 (() 60 percent of

(he e))_im,s had (me ()r more of lhe main bearings

rel)la(.e(l, and S7 l)er('en( of (he ('-7 enKines re-

quired par( rel)hwements in (he (m'l)ine section.

l)av( r(,l)la(,eme)l(s l)e(':mse of f()r(,ign-()bi(,('( dam-

a_e were very high in all (,n_im,._.
Tal)h' VI iu(Ju(h,s a l)r(,alcd()wn ()f l)ar(s re-

l)la(.(,d ())' r(,l)aire(l l)e('n,se (ff fl)rei_'n-()hje('t dam-

aKe. II is al)paren( (hat l)o(h ,_(ators and ro(at-

in_ l)la(l('._ and l)u(J<e(s suffer damage from

forei_'n ()l)je('I:. The C-7 enKine, (he only een-

Irifuga]-flow enKine alnong the five stu(lie(l, had

a lower fre(lU('n('y of compressor (]anm_e (ban

(re'him, (lama_e, whereas (he axial-flow engines

suffered m()re ('()ml)ressor (han iurl)ine (hmm,/e.

TAP)I.E V. -I{EAS()NS F()I{ ()VI,ZI{IIAUI, l,'()l{. (IR(-)UI) ()F I,:N(IINI,]S ()VEI(IIAITIA'iI) IN TIIE I)EI_I()I)

AU(_ITST T() ()(/TOI),E1L I(.)53

Faihtr(,s a>s()(:iat(,d wilh •

COml)r(,ssor a .....
Bla(h's ..........
S('tiors ......
Disks ..............

Casin_ .........
Mi_c(ql:m('ous .....

Main b(,arings ....
i (_c(,ssory b(,ti l'iil_S ......

Confl)u,_l or '_ss(,ln|)!y __ _ _
()uh'r shell ..........
Inlwr sh(,ll .....
Transil [oil liner_ ......
]:u('l nozzh'_ __
Misc(dhuwous_ _

TtlrI)ill(' s('cii(m .__ _

Nozzh, dial)hragm_
]{tl(,k(,1 s .....
l)i,_ks

Inn('r _,ts l)MIh,_ ....
Mis('(,lhtneous_

A ec(,s,_ori[,s ......

Forei_,n objects ....
( ',()mpt'(,ssor .......
Turbin(' section_ __

O1 h('r CILllS(,S b .....

Mean lime to overhaul, hr _ .

Numl)er in samph' __ __

C-7 A 7

9 12
5. 9 ') 7

7

.5 5.5,-- ()
i) 0

0 I0
0 0
() 0
() 9. 6
() 0

11 11|6
• 7 IF). I

, (I).-10
0 {}

0 0
I 7

57 26

' _) -

27 2(.1

'..>-17

136 l 73

])(,rc(,llt. of ('Ilgin("_ ov('rlutllli'd

l

p) :{ P, !) ] B-10
I

" ] "

4 5
0 0
0 . 6

),4 1,2( 0

:., 3.1
4

1
1) 0
o 0
o . 6
0 0
0 0
0 :{
0 .6
0 l. 9
0 ()
0 ()
0 . (i

5!) 42
5!). '2 -I1. (_

0 0
I !) ?)9

55 88
73 16L

a ])ot's not in('lud(' foreign-i)l)j(,t.t (hlnlage.

b ],:,_., l/ll)difit,ation, (,ra_,|l :llld a('(.i(h,llt, Ilnklll)wn, (!|l_lllg(,(I ill ] a (] ng

8
.5

1.4
0
-I. 3

1,.t
7
1
5
:¢.

.5
0

.5
0

I1
9. 5

5
0
0

1.4

:l.I(I,

')_ ( I
-3 3

0
28

305
210
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TABLE VI.--PARTS REPLACIi;D OIL ILEPAIRED DUglNG OVERHAUL (AUGUST TO OCTOBER, 1953_

Parts oi engine replaced

Engines requiring specified part r_pl'tcement
or repair, percent cf engines overh'tuled

C-7 A 7

'2'2 12
.5 6.6

9 .7
0 1. 5
8. 1 0
6.2 4.4

39 ?, 1
64 '2
-I 1 57

5.2 2.2
43. 3 55. 9

0 . 7
• 5 '2. 9

11 .7
87 .19

85. 7 -t2. 7
1. 4 7. -I

11 . 7
3. 8 0

11 1.5
II

I

,_:_.1 I
72.1 I

1.4 1
I-I. 7

52. 4
22. 4
.19. 6

1161t36

Compressor a ...........
Blades ...........
St, at, ors ..............
Disks ..............

Casing ...............
5Iiscell031eous .....

Main bearings ......
Accessory bearings ....
(_ombustor assembly , __

Outer sholl ........
hmer shell .........
Transition liner___
Fuel nozzle___
Miscellaneous ........

Turt)in(' s{'ction __ ....

Nozzh, di:tl)hrau;m
P, uekets .....
Disks ......

Inner g_Ls t)Mth'__ _
Mise{,lhtn{,ous _

Aceessori,s_ _ _

En2: v,s wi!h f()r(,igm-obj(,cl, dam-
_tgO) plq'(!UIll

(!oml)Pvss(w" _ 50. 3
I_l:t(h's .... 49. 3
SIaI Ol'S :{2. :'_

(_tl_illgs _ . I I. 9

_ . 21. '2.M is(_(,llant,{ms i
Tin'bin(, s¢'c_i(m b ..... 75. 4

N{)zzh, diaphr:tgm _ . i 66. s
Buck('ls ...... 70. {i

Me:m tim. to OVI'I']I:III], lit'. _- ;{(l,5

Nmnt){,r ill san,l}h' __ [ 211)

I

l)(ws not inchJdl' folt'i_zrl-<pbj: (.t damage, b Fortdan-ol)jPct {lam:rge.

The fact that parts wer{_ replaced or repaired

ill. ov{_l'hi/ll| (lops ]Io| llp('{_.%'-;ilPily lllPilll, ()f ('Olll'Sp_

tll.at tim eng'ine would not have l)een ()pei'ative

if the 1)art had not 1)l.,ml vl.,l)la('ed. For exanl.ple,

:l. tm'l)ine lm('k(q may have I)een rei)l'u:e(l be<:ausc

it had a ('racked airfoil; if not rephu:ed, apl)re-

cial)]e addit ional operatino' lime might be achieved

in s{)me cases before the airfoil completely frac-

tured. (h'a<.ked paris cannot 1)e left in, howeveP,

ml.less it l.hqlnilely is klmwn thai the i)rovrcssion
to fPactm'e will be very slow and tll.at fracture

will never cause :ul. aircPaft :l.c{'ident. The data

do indicate that the parts show at ]east. incipient
failure.

None of these en/ines h'l.d ever been over-

hauled previously; and the average engine in

overhaul had short ()l)l.waiin_ times since new,

B-3

15
4
4
0
1.4
6. 9

6(1
29
26

0
l 5. ,l
16. ,l
(1
0

-18
35. 1i
28. 8

11
I)
k).7
8

:17,

31. 5
28. b;
28. 8

1.4
2.7

!6. 4

') 7
If}'4

247
73

B-9 B- 10

5 7
1. 4 (1
1) . 6
1.4 1.9
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Pangin/ :fro]n 55 ll.()m's for tll.e 1_ 9 engill.C l() 305

hours for the C 7 engine. It might be thought

Ill.at these ]l.i/ll. rel)l'tcenl.ent rate_ are not tyl)ic'd
for all enTines in service, sin(:e {he data are only

from eno'ines ill. (}vl.,rhaul. ]_e{!ause a majl.}rity

()f tlwse envines came 1o overhaul 1){wause of

for{d/n-object (lain:t/, 5 a "ell.ante" phenomenon
(al)l)endix A), the data do tend {o rel)re_ent all

ml.gines in sl.wviee. From lll.ese tivures and {he

earlier one on tiehl rel)lacemc]]t._ (ti_. 7), it is
seen thqt whenever these engines ape carefully

examinl.,d ]II.I'_P lllHIII)PI'S of par'is will ll.eod 1'o-

placement or rel)air. This is l)ariicularly true

of hot-section l)'n'Is and 1)erhal)s main bearings.

It: is not certain when "t l}e:l.rin;z is replaced that

it has cle-u" indications of (l'ml.'lge, h(}wever.

Also, many parts will need rel)lacemcn{ because

,)f t',wvi_n-,,I).io('t damage.
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l,'mvam I1. ('omponents replaced :t]td repaired dut'inK major overhaul of five engine models (from l)IICs).

The ]mmber of rephteements of any part varies

with engine design; for example, replacements

of the nozzle diaphragm were made in only 8

percent of the B-10 engines but in SS percent

of the C 7 engines (fi_. 10). The number of

rel>htcemenls also varies with the al)lflication of

the envine.

TIMEDEPENDENCYOF PART FAILURE

The most important data needed from service
exl_erienee to assess the reliability of any engine

part, aeeur'_tely and ob,iectively are the rates of

failure against <q>et'ating time. (Rate of faihn'e

is th<' per'centare of the parts in service lhat fail

per t nit of time.) If the failure rate a_zainst,

Ol>eratin _ time is known, the seriousness of re-

porte l ]>art failures will be known and ]wed not

be Im_+ed on conje,'lure. For example, as st:fled

in th+ secti<)n (;allSes of Engine Overhaul, for-

eign-,d@et da]mtffe was the most frequent and
,.onsi,.tent Pause for overlmul and front 2t; to 59

percent, of the engines in overhaul came for

that_ ;'eason. This nmnber is not of iml)or/anee ,

howe:,er, mfless it is related at |east to the ol)-



FACTORSTHATAFFECTOPERATIONALRELIABILITYOFTURBOJETENGINES 29

eratinfflife of tile engines. If tile operating life

were very long, say 10,()00 hours_ the fact that

an engine came to overhaul because of foreign-

ob.iec! (l'unage wouhl not I)e nearly so signiticant

as ill the case of an average life of only 250

l.)urs. The true imllorlance would 1)e clear if

the pel'(:entage of engines requiring overh'ml be-

cause of f(_reign-ol)ject damage per unit of flying
time were known. In addition, from data of

failure rqte against operating time it can I)e

determined whether the part failure folh)ws a

"ch:ulce law" (failure rate time-indel)endent ) or

"wear-out law" (failure rate time-dellendent ).

These laws are described in appendix A.

If the p'u't failure follows a chance law, sched-

uled replacements will be of no help in .tvoiding

failures. Inspections to search for incipient fail-

ures, say cracks thai may lead to complele part

fracture, may still be helpful in some eases, how-

ever. The failm'e r'lte e'm be re(hwed by re-

ducing the severily of the environment (e.g.,

screening tile engine or cleaning runways to pro-

te('t against foreiKn objects) or by making the

c(mq)onent better able to withstan(l the environ-

ment with iml)roved materials or design.

If tlle l)art failure folh)ws a wear-out law, then

a grace period may t)e found during which no

faihu'es occur. Replacements can be scheduled
before faihu'es slart or when the rate reaches '_

certain value. The failure law f(_llowed t)y 't

l)art should 1)e determined from service records,

be('ause uni)redictal)le envii'omnenls miKht, cause
a i)'_rt failure that was exl)ected to follow 't

wear-out hlw to folh)w essenlially a chance law.

Also, failure raies may 1)e higher in service than

predicted by design or by test-stand operation.

The f'dlure rate for components couhl 1)e de-

termine(l by introducing 'l known saml)le of new

engines into service and determinin K the per-

centage of the l)articular part failed after the

engines have operated through various time l)a-

riods. Also, the failure rale of COml)onents could

1)e (letermined lly the actuarial method (appendix

B) if the COml)onent failures were reported as

relalod to total exposures to failure in a manner

similar to that now reported bv the Air For(.e

for the engines ns a whole. Since data such as

these are not now awdlal)le, variation of failure

rates with operatin_ time calmer 1)e determined

for e|l_ille eonq/onelMs.

Data alle available from the i)IR's that give

the el)crating times (m the engines in overhaul,

the part failures tlmt cnused the engine to come

to overhaul, and all additional l)arts rellaired or

replaced in overhaul. An attempt was made to

see whether something al)out time dependency

(other th'm failure rqtes) could 1)e learned from
these d'tta. It. is obvious that causes for overhaul

must be related in some way to lhe engines ill

service. Tile parts that cause the engine to come

to overhaul are essenti'dly the "bad" paris, and

any study that considers only the engines in

overhaul would be basing conclusions on the bad

parts and neglecting the part of the sample that

is still in service. It is basic that any discussion

of time dependency of faihlre must relate those

failed to the sample as a whole. This subject is

discussed in more detail for the engine as a whole

in appendix A. The causes for overh,/ul could

not be related to tile total engines in service, be-
cause tile service informalion was not awfilallle.

Based on the argmnents that follow, some ef-

fol'IS were possil)le 1(7 determine time dependency

of failure for the parts replaced or rel)aired in

overhaul (in addilion to those causing overhaul).

If a random sample of engines from service can

be selected and lhe l)arts thoroughly examined

for failure, some information can 1)e obtained 1)y

determining the l)ercenla_e of these examined

per unit of operating time that lmve a particular

f'dlure and plotting these data against ol)eratil_g

time. At least some insight may t)e gained as

to whelher service time affecls l)art failure, and

some idea of percentages of failures may 1)e in-

dicated. (_enerally, these failures fmmd will be
"incipient" failures as contrasted to faihu'es that

will make the engine inoperative. For example,
if a s'unple of engines is (,hosen from service and

examined for f'dhu'es, tile turbine lmckets may
show cracks, but very few wouhl have the air-

foil missing, since missing airfoils would have
made the engine inoperative and such I)uckels

would have ah'eadv been repaired.

Tile engines examined in overhaul lend to meet
lhe needs for 't random sample, in that the ma-

.iorily of these enKines were in overhaul because

of fm'eign-ol)ject damage (which is a chance

t)henomenon) or for causes unrelated to tile en-

gine (e.g., damage in h'mdling). The time de-

1)(,ndency of the f:dhu'e of p'lrts reI)la('ed I)ecause
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of other than forei_l-object damage was exam-

ined. The engines were grouped into classes of

about the same number of engines, usually about

20, but in order of increasing operating time.
The failure rates for the first 9.0, then the sec-

ond 20, and so forth, were determined and plot-

ted as histograms against operating time (fig.

19.). If no failures were noted, the end of the

sample interval is indicated by a short vertical

line. Smooth curves are drawn through the mid-

points of the tops of the bars to produce the final

curves. Plots were made for all main bearings,

compressor blades, eombustor inner liners and

transition liners, nozzle diaphragms, turbine

disks, and turbine buckets.

For the bearings it was quickly found that as

a rule a straight horizontal line would fit the

liistograms quite well, suggesting that the prob-

'lbility of replacing a bearing in overhaul is in-

dependent of oper'liing time on the bearing.

Although these bearing data indicated that bear-

ing r_'lda¢'em<'_t is independent of age of the

bearing, bearing .faiho'e is not necessarily time-

independent. The inspector who makes tlte deci-

sion to replace the l>earing does not have an accu-

rate criterion for rejecting bearings. Rejection

in often l>aned on his intuition phls the reasonable

phih>sophy lliat an long 'is the engine is disassem-

l>led anyway, new bearings may as well be in-

ntMh, d. Chapter IX of this report proves that

many _ood bearings are replaced during overhaul.
Sim'e hearing rel)lacement does not indicate 1)e,ir-

in,/ faihlre, nothing can be learned froni 'm
examination of such data, and no curves are

llresented.

For lllOSl oilier parln, however, tile basis for

replacenient in craeldng, warping, or fracture of

the part, and part replacenmnt indicates incipient

faihu'e. "Ileplacenient probability" curves are

presented for each of tlie oilier paris by engine

model in figure 1% In niany cases the proba-

bility of the need for part repair or replacement

in quite high and increases rapidly with time.

For example, figure l°-(a) shows data for the

A-7 engine. The curve sllows that, for engines

liaving only 50 hours of operating time, 15 per-

cent needed nozzle diilphragm replacement or

repair. The probability increased rapidly until,

after 275 hours of operating time, more than 90

percent of the engines needed nozzle diaphragm

repair or replacement. A similar curve is shown

for inner liners. The curve starts high, and the

proba;fle necessity of inner liner replacement

increases rapidly with age.

Some of these parts in service engines show a

grace period. This is indicated for the turbine

bueke_s in the B-a engine (fig. 12(b)), where

none of the engines that had run less than 138

hours needed turbine bucket replacement; then

the probability started to increase. In order to

achieve good reliability, all components should

have a grace period so that replacements can be
sehedltled to avoid failures. The grace period

shoul(i lie very long, preferably greater than the

desire 1 time to overhaul, so that replacements

do not have to be made before major overhaul.

Other parts also showed a grace period. For

example, no turbine disk failures were indicated

out to the maximuni time on these B-3 engines

in overhaul, 635 liourn. The sample size w,ls

very ._mall, however.

Untortunalely, many of the hot-section eom-

imnews exhibit failures starting near zero time.

It is of interest, however, that, although high
rates <ere found for a component in one engine,

the ffilure rate for ibis component may be

neglioible in ,moiher engine for the operating
time Yor which data were available.

If ,laia plots like these "u'e to be used, they

shouh; be based on much larger s'unple sizes and

they n rest be ve W carefully interpreted. For exam-

pie, t w C 7 engine (ti,.#. 12(e)) gives no indi-

cation of incii)ient bucket faihu'e. The cliapter

on tlilbine buckets (oh. VII) points out that tlm
naturt, of tlie failure nieclianism of the thickets

in tlii_ engine is such that incipient faihlre will

not b_ found. The buckets progress from crack-

ing to frlu'ture so rapidly that the first indication
of fra.'ture is actual tracker fracture. The method

of inspection nmst also be considered. This was
discussed in connection with bearing faihu'es.

Also, no incipient failures of turbine disks were

found in the B-9 engine. New inspection proce-
dures liave since been introduced that are now

finding quite high percentages of incipient eraeks

in disi_s in overhaul in this engine.
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ACCIDENT STATISTICS

A smmnary of the causes of engine failure or

malfunclion lhat resulted in 205 jet-powered air-

craft accidents in the year 1958 is shown in

ti_ul'e 13 (daht fPom ref. 4). The parl. failure

responsible for the accident could not 1}e dehw-

mined in 11 l}ercent of these acc,idenls. The big-

gest single olt'ender was the fuel control, width

caused 33 l}ePcent of lhe a<,cidenls. See{rod was

COmlwess.r faihu'e, in{'ludin_ thai {]lle Io fol'ei_n

ol}je{,ts; followin K this was tm'l}ine tmckels, then

tm'l}ine disks, l}earings, and tinally miscellaneous

causes, inchuling 20 ac{'idenls from 16 different

causes. For eae]l of the {-{)nll)one]/ls listed in

ligure 13, "d}ou{ half lit{; failures resulted in

destruction of the airpI'me.

Of these o05 a<.cidenls, 173 were ]isled as lna-

jor accidenls, <}f which 100 resulle<l in total {le-
slruclion of lhe air{waft and 73 in snl}slanlial

{la]n'/ge lo 1he ail'<.Paft. The rate for major

m'<'idenls caused by engine failure or malfime-

lion was 7.9 1}er 11}0,000 aircraft tlying hours

(ref. 5). It is of interest lhat the failure rate

for axial-tlow engines was almost lhree times dmt

1,or eentl'ifugal-fh}w engines (lO.0 an{l 4.1, re-

speelively, per 100,000 aircraft flying hours). Of

/he 5-t accidents ai/rit)uled to compressor failure,

only one involved "t centi'ifu_al compressor, al-

lhough |he "tireraft flying time aeemnulated for

each engine tyl)e was the same, about 1,100.000
}lOlll'S.

Of lhe o05 accide]ds listed in fiCure 1,3, 188

involved single-en_ine aircraft and 17 invoh-ed

mulliengine aircraft; however, lhe mullien_zine

air<waft h'ul much less exl>osure 1o failure (i.e.,

less {>l>eraling time). The nmnl>er of major

a<:<:iilents fop lllnltiell_ine airer'ift per llnit of

ol}eralin _ lime (axial-flow engines) was nl}out

lhe same as for all aircraft having axial-tlow

engines (1o.2 and 12.1 per 100,000 aircraft hours,

respectively). For the single-engine aircraft, 98

of {he lSH a{'cidenls, oP 52 Iwr{'ent, resulled in
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1)islrihuti,m of caus_,s of end;the f:dlurc or malfunelion 1t :it resulled in 205 .kit' l"(u'c'e jel aircraft aeei(hmls

durin_ 1953 /ref. 4_. I.\ 'e "aft deslroyed in :d)out half lh* cci_ Pills resullimz front each cause.')

destruction of the aircraft; whereas, for multi-

engine aircraft only _ of the 17 accidents, or lS

percent, resulted in destruction of the aircraft.

Although only limited flying time (about

105.00n hr) was availahle in 1953 for aircraft

having' pod-momHed en_i]les, the major accident

l':.l.lt_ was tlllollt one-lhird of the average, or 3.S

per 100.0O0 hours (four m'tjor accidents). Only

one of these four major accidents resulled in

desh.uetion of the aircraft, and in that case the

rl'aKlllelllS Of the lurl)ine wheel went l}lro/iK]l ihe

fuselage: ruptured the refueling manifold, and

sol lh'e to the aircraft. In two of the four act:i-

denls, lhe enKines llml faih,d tore loose from tile

a ircra ft.

SERVICE RECORDS DESIRED

As p,finted out earlier in the section on TLm.:

DFPENDI._NCY OF I'ART FAILURE, the lllOSt ilI1pOlq'tllt

data needed from service records are the rates of

failm'e of the engine components against oper-

atin_ lime. _Vilh these data the problem areas

would be accurately illmninated and the impof

lance of the prol,lem wouhl lm qmmtilalively de-

lel'min,,d. If the correct informalion were pro-

vided, ::l_e service data would provide a hasis for

the fo lowing:

(1) Improved desis.,n, 1,o11_as a basis for quick

tlxin,,., of urgent prohlems and ns a b'tsis for

Imihli_ up ]ong'-ran_'e desi_2"n criteria so that

future desi.._,'ns may. 1,e improved

(_) Improved ol)eraling eomlilions : improved

person _el procedures, improved engine con|rols.

,ml ru _wav c]eanine- in the ,'ase ,_t' f-rei_n-ol,iec[
(lallliI _r ,_

(3) lh'mision of sa fe,2u:_rds such as screens for

lWOlection a_ainsi t,orei_n ,,hip's'is :..1 w.mdn,....

device; to warn of iml)emlin,..z p_,rl t'aihu'e

(4) _.'hedulin_r of rel_laeenlenls and inspections

to red_,'e the lwohahilily of tli_'hl :wcidenis

From r review of the current t':tihu'e data it i_

alHml'ent that Kreal ecmu,mies would be ,/:tined

from ':qfid inflow ot! quanlilaiive failm'e rate

stalisli's tim/ imlicale ac,'m'alelv where quick
tixin_ is needed. Beside_. the savinIzs ohtained

hv redm.in_ the l_r.hahilily of fuim'e aircraft

:wcide_ ts, the logistics lwoldem and lhe ]mmber

ot' Slm_'e en;,:im,s mi_'hi 1,e reduced. Frequently,
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problems conlinue for a long period of time be-

fore they are recognized and studies for a solu-
tion are initiated.

The desired records involve two main features:

First, an accurate operating history of engines in

service is required, and second, all part failures

for tile engines in service must be known. These

data must be reported in such a way that the two

can be put together to determine a faihu'e rate.
In "nldition to the identification of the failed part,
informalioll is needed as to the nature of the

failure and the location of tile failure on the

part (see item II. C. that follows).

Both the Air Fm'ce (ref. 1) and the Navy

(ref. 6) have initiated new programs of record

collectin_ as a basis for product improvement.

The l)roKrams emphasize the collection of part.

failure data similar in part to that described in
seotion 1I that follows.

Althou¢h lhe magnitude of lhe required data

may seem large, that su_vested in section II is

not inconsistent in mag'nitude with that already

initialed b.v the Air Force :rod Navv. In addi-

tion, the Air Force is collecting data on engine

life for the actuarial me|hod that at least ap-

proxinmtes that su,,dvested in section I. The

mag'nitude of the program could I)e reduced by

eollectin V data only for en_ines that will be used

in al>prccialfle nulnbers in the fu[ure, not data

from retirin_ engine models.

The followin V records apl)ear desirable:

I. ENGINE IIISTORY--An en_rine log should

be maintained that will stay with lhe engine.

A. Initial informaiion recorded on this log

shouhl include :

1. Serial number of engine

2. Manufacturer and dale of manufa('ture

3. ModiIicalions incorporated :frmn dale of
manufacture to date of installation

at. l)ate of placing in servi_'e

5. Model of aircraft and position in which

eno-ine is installed

B. The following history during usave should

l_e recorded:

1. Operating time and date of modifications

2. All part replacemenls or repairs, including

operaling time, and date; where several of a

particular part are used (e.g., turbine buckets), a

lo_ of each part and a melhod of identifying i|s

location in the engine must be kept so that his-
tories are not niixed

3. History of replacement parts installed

(whether new or used)

4. Engine operating time when minor repairs

and overhauls are performed and description of

work perfornled

5. Ol)erating history including:
't. Time at maximum rated conditions

b. Number of accelerations and decelerations

c. Nmnber of slarts

d. Duration and severity of each overspeed,

overtemperatm'e and associated engine speed, and
hot start

e. Air base of using activity

At regular intervals (e.g., every 3 months),

dala for each engine by serial number should be

sent lo a central data agency. These data should

describe the total operating time on the engine

and the operatin_ time at which overhauls and

repairs were performed and summarize the his-

tory of operating conditions.

In view of the extensive minor repair program

for jet engines, cmlsiderable doubt is raised as to

the usefulness of dat't describing time to over-
haul for these engines. Since the enth'e hot see-

lion (combustor, turbine section, turbine bear-
in_s, and t'tilcone) and extern'd accessories can

be replaced in lhe field, engines are now sent to

ovel'halfl i)rimarily because of prol)lenis of lhe

compressor and :weessory drive section of the

envine. It is understood that changes of even

these paris in the field nmy :also be permitted at
a later date. Therefore, lhe average time at

which an envine is sent to overhaul will tell only

a very small and difficult to interpret part of the

engine failure story. The specific data that are
needed are the rates of part faihn'e a_ainst op-

m'alin_' lime as developed by sections I and IT.
IT. PART REPLACIgMENTS AND RI';-

PAIR Whenever a part is repaired or replaced
whelher in the tield or din'tug overhaul a record

should 1)e sent to a central data agency indi-

eat ill(r "

A. The part and whelher it was replaced or

tel)aired and reinstalled

B. The ol)eratin_ time on the part

C. Failure of the part (e.g., whether cracked,

frachwe(1, nicked, dented, or dislorted) and lo-

cation ()n the part where failure occurred; (the
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manin fl,e fieldcann<)tbeexpectedto interpret
the cause of failure, whether fatigue, stress-rue-

tim', etc., but wilh a report of the localion and

veneral charach, rislics of lhe failm'e, a pailern

will devehq> enablin/ technical personnel 1o go
into the tlehl to study 'lnd interpret "t particu-

lar type of failure)
I). Model and serial number of en_'ine and air-

,'raft and base of activity
F. (qrcmnsiances that resulted in [imlin,_ the

failure re./., tliglli insl,'clion, inspe(tion during
_werhaul )

F. Effect of t)art failure on engine operation

and associaled enffine parts

(k 1)isl>osiiion of part replaced, whelher con-

demned or relmired

I)aia described in sections I 'rod II are be-

lieved t(} reliresenl all the data required for an

m.h, rstam/itqz of reliallility of :tit engine model.

The cenlral a_ency can enter part failures by

en,.,'iiw serial nunfl)er into a cardItyl)e iaI)ul'/tin/

system, llavin g a record .f every parl failure

-r repair and of lhe .1)eralinff time on every
engine in service as described, in section I, the

cemral aKency can deternline the faihire rate

aaainst ol)eraiin ff lime of every important, en-

,a'ine cmnponent. This would simply l_ a matter

of delerndninff how many engines had conll>leted

a linle period of flight, say froni 0 to 25 hours,

and what l)ercenl had a pari icular part failure

in this finn, period.

.\lih_m,/}i tlie difficulty in conlliilin ff ol>eralin K

data :is under I.A. 5. is appreciated, particularly

where l:u'_e nunibers (}f en_zines are invoh, ed, the

,'orrelaliml of cmnlmneni life alzainst, operaling

,'_,ndiiions wouhl be of gretU value in aidinff in

the definition of the importan<,e of service op-

erating cmMithms and in l>rovidhlg a b,_sis for

sd,,dulinff reldacements. (Additional conmmnts

are made on lids sultiect in the other chapters

of [his report, t>articularly in oh. VII.)

As nieniioned previously, the niain features of

recordin/ (>f part rel>lacelnenls :is described in

secli_in II have already l)een adopted l ty the

Navy (ref. 6) :Is well as lhe Air Force (ref. 1).

1. additi(,l, I)IR's will be written for all niinor

repairs "is are now written fro' major overhauls.

The locaii.n of the failure on the i>'lrt (II. C.) is
believed to deserve considerali(>n for inclusion

into the svslems of references 1 and ft. Additi<m

of se,_tion I wouhl provide a basis for determin-

in_ he important dala <m c()mponent failure
rat es.

SUMMARY OF RESULTS

Selvice records of turbojet en_zines in Air

Force military service were sampled 'rod studied.

Allli,ugh lhe records were not designed for this

Imrl>ose, considerable insight was _zained. Sug-

/esli(,ns were presented as to (l'na required for

any improved fulm'e stmlv similar lo thqt con-

ducle,l hereiu. Among the more important tind-
in,_s :'rein the available data were the following:

1. '['lie lime lo overhaul <if the average lurbo-

jet mlgines of three models for which consider-

able exl)erienee has been obtained varied with

engine model and 'lpltlication from 105 to 760

hours. Most of lhe engines were near lhe low
side ,if this l)'md. In addition 1o mat,it over-

hauls a very exlensive program of fiehl minor

rel)ai's is in use for the jtq en/ines. The engines

are g" yen 1").5to 17 niinor repairs fill" every major

overh tul. A minor repair can consist of replace-

merit of all hot-seelion componenls.

:2. The most frequent and consistent cause of

overh:ml was foreign-oil jeer danulge, from 26 to

;,9 percent of the enlzhies beinff (,verhauh,d for

this 'eas()D. Tlie relative freqileli(tV Of Ol}ler

callSes for (iverlialll varied appreciably wiih eli-

g'ine (iesign and appliealion.

3. ]-'ailures in lhe hot seeti<m of the engine,

tllal i a, tile eOllllaisior aild tilI'biile seelions_ are It

fl'etlilrllt: eallSe for entitle rellioval frolli itireraft.

..tlS(>, ]ai'i!_e ])ercellta_es of the el/_illes Koing

lliroui._h [ieht rep,iir ant| nilijor (rceriiau] require

rel)la(enlellt and repair (rf tiiese i)arts. Ill one

eil_iiil; model, for exalllple, g7 percent of the en-

gines aoinz through overh'ufl require(] repair or

rel)la(enlent of a part in llie lurtiine section,

either lniekel, disks> or n(izzle (|ial)|iragni. Tile

nie(li:ill tilne lo over]lau| of this eli_.ille ",va._ 305

hours. In anol]ier enffhie niode], 15 percent of

tile el gilleS ill (i'¢er]lall| haviilg 50 ]l()llrS of op-

eratio l had their ilozz]e diapllraglliS rep,lired or

replaced. After .075 it(till'S, 90 percent of these

en_'inls required reI>]acenmnt or repqir of the

nozzle diapln'agm. In other engines the "failure

nile" for the same part was low.

4. q'he failures of some en_rine l>arts have been

causes of flight accidents. In 1953, o05 a<.<.idenls
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were caused by engine failure or malfunclion.

/n decreasing order of frequency, these were fuel-

control faihu'e ((;8 acci(lents), compressor fail-

ure including foreizn-object damage (51 acci-

den/s), turbine lmeket failure (16 accidents),

turl_ine (lisk failure (14: accidents), and main

RELIABILITY OF TURBOJET ENGINES 39

bearing failure (10 accidents). Of the 54 acci-

dents resulting from compressor failure, only one

involved a centrifugal compressor, although the

ttying time accumulated for engines having cen-

t rifug:tl compressors was about the same as for

en_zines havin,: axial compressors.

APPENDIX A

CLASSIFICATION OF FAILURES

Failures have been classified on the basis of

their governing laws inlo |hree broad categories

(refs. 7 to 9). These categories are initial fail-

ure, chance failure, and wear-out failure.
Initial failure results from the fact th:tt a

component is defective at the lime it is tirst put

into operation. Such defecls result, for exam-

ple, from errors in mamffacture or from the

I)re-use environment such as danmge in storage,

transit, or handling. ]'roper testing or "Kreen-

l'mming" shouhl prevent initially defeciive com-
l)onents from being put into service.

Chance failure resulls unpredictably from en-
viromnen|al causes. The fmM'unenial (_haracler-

istic of chance failures is that, for fixed environ-

mental condition% the hazard of "t failure-causing"

condition is equally likely during equal limes in

the operating" period; that is, lhe lWol)al)ility of

failure is in(lel)endent of ol)eratin#z time. An

example ()f chance failm'e is damag'e l'esulling

from f()rei,a'n objects eomin K imo the engine inlet.

A foreign object is equ'dly likely to elller |he

inlet at any time in the life span of lhe engine.

Wear-out failure results from the del)leti(m of

some material or I)ro|)erty of the c()ml)()nent that

is essenti'd to its ln'Ol)er ()l)eralion. Tim dei)le-

lion process lnav OCellr lhl'oll/.rh aln':lsion, corro-

siml_ or through the "usin_ Ul)" of life as in

stress-ruplure ()r faliKue. The l)rol)a|)ility of

failure increases wilh age. An example of _%vear-

out" failure is the failure of turbine buckets by

stress-rupture (see oh. VII).

Figure 14: shows the shal)e of the curves for
several fun<'tions for chance and wear-out failure.

llolh left and middle curves are instanlaneous

failure rales; the left curve is based on lhe 1)art

of t)Ol)ulalion lhat has survived the i)revious time

interval, whereas/lie middle is based on the slart-

5::4.q_;" (;1 4

ing 1)Ol)ulation. The middle foretells 'tt the start

of ()l)er,ttion what fraction of the stqrting sample

will fail per time interval at solne time in the

fulure; that is, it evaluates "t group performance.

In contrast, lhe left curve deals with the indi-

vidual that is still successful 1)art way through

ils life sl)an and gives its failure rate in the

immediate fmure. The left curve is commonly

called (ref. 9) 1he "hazard" of failure function,
and the middle curve is called the "distribution"

of failure flmction. The curves are, of course,

mathematic:ally relaled. If one is known, the

other may be delermined.

Comparing lhe chance and wear-out failure

tyi)es _, several facts qre evideni. With chance

failure, a new COml)(ment is as likely to fail as

an ohl one, 'rod nothing can 1)e gained by sched-

ulin_ rel)lacements or 1)y prevenlive maintenance.

The failure rate Call t)e reduce(I olll 3" Iw re(Im'ilkg

lhe severily of llw enviromnent (lhe hazar,[). ()t'

})y lnakin_' the COml)mWln lu, lter al)h, (() with-
st:rod the enviromnent.

\Vilh wear-our failure. I)revem ix'(, maintmmn,'e

('an 1)e exire,nely helpful, and relda('emems _,f

ohl eoml)onems may be s('heduh, d to reduce fail-

m'esin service. Also, only in wear-()m failure is

it l)ossit)le 1o have a l,'riod of lime 1,eft)re fail-

ure begins, a 7race l)eriod.

'1'o iml_r()ve reliability, efforts musl 1,e made
to reduce clmnce failure rates io a lnininmlU,

thereby ensuring thar coral,orient failure is 1,v

weal'-Oll{, rl']lell l)revenlive lllailltellalwe cal! lie

use([. The grace period for wear-out failures

should be as hmK as possible, at least Kreater

than tim 1)hmned lime to overhaul

The shape of the distrilm(ion of times to over-

haul for a 1)articular en_zine is usually the result
of the a(hlitive effecls of the distrilmtion of fail-
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m'e of many of its (.mnponents (ref. 7). On new

engines lhe sh'tpe of the curve may define the
failure characteristics; chance distribution would

probably indicate that unpredictable environment
is very iml)ortan{, and wear-out indicates that

environment is of lesser iml)ortanee. For an

overhauled engine, the shape of the curve of time

to merhaul m'_y be misleading. For examl)le,

an en/ine eont,dninK many eolnponents, each of
which fails at :l definite age (wear-out) but which

are ()f mixed a_zes (from a previously repaired or

overh:mled eno'ine), can exhibit a constant hazard
of failure (chance). On the o/her hand, if an

oveHmuled engine having paris of mixed ages
shows essentially a wear-out failure distril)ution,

perhaps it might he said that the iml)ort:mt parts

are being replaced in m'erhaul and that environ-

mental lmzards are not e,)mrollin_ failure.
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change a_M wear-out clu'ves (rcf. S).

Th, curves on the right side, which plot the

total munber of f'tilures as a percentage of the

initial population at any time of operation, are

ealle(! cumulative frequency plots. All three

curves are mathematically related. If one is

knmvu, the others may 1)e determined. Use of

this s made in the actuarial method (ref. 2).

'l'hes_ (!mnulative frequency plots are useful for

corn 1) u'ing engines, p,u'lieularly, because the per-
cent ,n' numbers going 1o overhaul after a period
,)f line and the median life or the life of the

'_vt, r:_ge_ engine may. he read directly... The me-

dian is the 50 perceld point; half the engines
have a life less than this time and half have a

lift, _t'elller lhan this lime. For reasons descril)ed

in a)pendix B, lhe median (rather than the

mean) is used in lhe body ()f this paper for eom-

lmri, ,,U_,n_ines.
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APPENDIX B

ACTUARIAL METHOD FOR DETERMINING ENGINE LIFE

Ill tile study of engine reliability, it is impor-

tant to know the average life of the engines and

the percent of the engines that will require over-

haul after various periods of time. The Air
I,'or,e now uses the actuarial method to deter-

mine tim overhaul distribution curves from which

this infornmtion can be obtained.

Before describing the aetu'u'ial melhod, it is

iml)ortant to emphasize that the average engine

life cannot be determined solely on the basis of

the operatin_ time on engines in overhaul. The

primary diflieul(v with this practice is that (he

a,.m of (he engines in overh'ml at any.. time is

rela|ed to the a/e of en/ines in service. If, for

example, a sample ot! new eng'ines were intro-

dm'ed into service and (he life of those engines

that had gone to overhaul were examined a short
time laler, the avera,m time lo overhaul w<mhl

be found to be very low, l>ecause (he engines

wouhl not have had time (o aecunm]aie many

operating hours. Obviously, Ill(': time to overhaul

indicates the life of the I)'M engines; tile good

ones are still in service. If the operating time

on the engines in overhaul is reexamined some

lime later, the average lime [o overh'ml will l>e

much higher and with time will l>robal)ly tend

to in('rease mltil all the eng'ines <>f the sample

lmve _one lo overhaul. In fact, only after all

the enghles have zone (o overhaul will the dis-

trilmtion of lives of engines at overhaul give the

correct ti_m'es for eng'ine life. Since the 'u-er-

ase en/ine in milit:u'v service may fly only oO

hours per mort(h, it wmfl(l lake 3 yeqrs to achieve

7"2(>h,)m's of ol)eration on the aw, rage engine and

1)erhaps (wi('e (lint hm:_." for some enTines of the

Saml)le.

In l)ra('tice, the siiuati(m is more complicated
(hart des('ril)ed, because, as engines are removed

from service for overhaul, they are replaced in
service l)v new ()r newly overhauled engines.

l'sually. (his resul(s in a (lis(ril)u(ion of operat-

ing" (into since new ()r since ()verhaul on eno'ines

in service, as shown by figure 15. A high per-

('enlage ()f (he eng'ines in service have low op-

eratin_z times, 'rod thus (l_e ol)eralinff time on

the avera(/e en,_,'ine in overh'ml will l)e h)wer than
tile correct (lis(rilm( i()n. Very little can be learned

about overhaul times 1)3' examining the average

times to overhaul of just those going to overhaul

in a particular time period.

The most (lire<'t n)ethod <)f determining (he

[)el'eellla_e o[ till ell_ille model that will _o to

_c

g
c

(a.a

"5

z

Operating time, hr

t_lCl:'RI:_ 15.--Tyl)ieal distributions of "_ge of en_in(,s in

service,

overhaul "trier vari()us (trees of operation and the

aver:/,.z'e life (informa(ion described by the nfid-

die ()r rio'ht curves of fig'. 14) is to introduce ,'t

tinite s'unple of engines into service and (o de-

(ermine the i)ercenlage of the sample that goes

(o overhaul after v'u'ious periods of opera(ion;

for examl)le , wait unlil all of (he sample of en-

g'ines have ol)erale(1 50 hours 'rod deterlnine what,

1)ercent went to overhaul, (hen wait until all had

operaied I00 horn's and (letermine what l>ercent

Wellt (() <)verhall], and s() olI. 11l practice, this

method is :tlmost impossil)le (o use, because some

of (he sample of e)@nes may be operated only

ver.v li((le and it may 1)e ;t long time before all

<)f tlm sample have ('Oral>feted even the first I00
]I()IlI'S.

It. is usually lnore convenient to determine the

h,ft curve of figure 14 and from this to calculate

the middle or right curve as desired. The left

(:urx-e in(li('ales the l>ercentage of those that



42 TECIINICAL IIEPOI{T 1t 54--NATIONAL AERONAU'qCS AND SPACE ADM1NISTRA'YION

started a 1)articular time interval (say fl'om 50 lo

11)0 hr) that fail ill the time interval, whereas

lhe middle curve dese2'il)es the 1)ereent of the ini-

lial or starting sample that fail ill the time inter-
val. To determine _he left curve, it. is not neces-

sary to wait until all of a sample h'tve passed

throw,..'h the lime interval; but. rather a faihu'e
2'ale for any time imerval call be calculated as

soon as a sufficient mtmber of engines have oiler-

aled lhrou,_h the parlicular time interval to per-
rail a slalislicallv sound caleulalion lo be made.

The Air Fm'ce uses the a('luari'tl method to

delermine the left curve for all jet-engine mod-
els in service. The calculations are made as fol-

lows: For je| en,.,'ines lhe. olmratin ff time is
divided into 10-hour inlel'vals. Each month the

Air Force determines how many hours were

//o,,,_ (reindeer ,ff "exlmsures to failure") by an

cn/ine model within each 10-hour time interval;

then lhey delerll|ille how 11112113"engines from
each tilue inlerval lind to be sent to overhaul for

"usag'e" reasons. The ralio of these two numbers
is lhe averao'e failure tale per hirer for the par-

li,'uhL2" time period. Multiplying" 1,y 10 ,._,ires tile

lolal faihtre rale fin' lhe 10-hem" period. (A

chu'il'yin_r conmwnl miffht be made about the

iml,Wt:mce of the lerm "exposure to faiha'e."

Whereas. in the case of human mortality, any

livin_ Iwrson is conslanllv exp.sed t,> causes of

dealh, aml this exposure camml be [Ill'lied OIL alLd

off a( will, engines are "exposed to failure" only

when ol_eralin,..z' ; lhus, engines thal have not Ol)-

erated durin,,Z a siudy period must I>e excluded

t'r.m lhe study Samltle.)
The same cah:ulalion is made for each ]0-hour

period f.r enKim, _qn, ratinff limes as great as

]rove been ohtained. These failure rales a2'e plol-

led a_ainst time, aml the experilneni:ll data are

then smoothed :rod extral)olaled lmyoml tilt, point

where ,,F,era/il_ exF, erience has been ol,tained.

Fi,,zm'e 1(; (from ref. 2) sh,nvs a typi,'al plot of

crude filihtre 2'ale_, the sm,._lhin_-, and lhe extra-

pohflion. In lhi_ lmrlimflar plot lhe failure rate

has l,een drawn up to li)0 pe2'eent in lhe last time

period (to 51)0 hv), since lhis is the maxinlunl

allowable operal in,,.,"lime for the engine and over
haul is lnan.dalorv.

Basic.ally, the preceding is the melhod by which

the failure rates are calculated by the actuarial

lnethod. In practice, the actual calculations are

E 9E;I-

22--
_' PC,
g

"2 IE---
q
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'_ IC
o

4
_, ra
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this point-l _ _ _r- _ ;
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> 'TFt i I! t [
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]"i(;t:lt : 16.---Typic:d f:dhn'e r:tLe curves ,h,lvrmin,,d by
aclu'u'i:d nlelllo(l (rvf. 2).

quile invohed, because it is essenli:tl in deter-

mining the failure rate for each lime period that_

lhe n Inll_et' of P]lffiltes sent to over]lal21 ].m di-

vide_l lw the illqlll21 11111111)cr of "ex1)oSlll'es to

faihw m in the time period and not just lhe ram>

lwr ,, eng'im,s that happen Io have, say, from 0

io III hours of operating" lime. ()braining- these

dala 'equires lhe use o1' an :ulaptation of lhe

g'ener:d "_xposed 1o risl<" formulas used in the

calculltion of m.rt'dity taldes for lmlnan lives.

This ulnl_tali,m ha,_ been developed hy the au-
llt_ws of reference %

()me lhe failure rate curve (the left curve) has

I,evn letevnfined, lhe frequency distribution of
limes to overhaul (lhe middle curve) can be read-

ilv ca mdated by nml|il)lyin ff lhe ]mml)er in lhe

_amp1 '_l_y lilt, failure role of lhe tivst time period

1o ,,_iv ' lhe mmfl)er failed in the tirsl lwriod, sub-

/va,'lilm' lhis nmnl_e': from lhe ol'i_in:d saml,le

size, :lml multilflyin ff 1,3" I'aihH'c ]'ale for the sec-

,rod lime peri,M 1o ffive the lllllnl)er faih,d in llm

secom period, and so forlh.

Thv life el! the :lveraffe ellffille (file lnedian) is

rec,>m re'ruled and is used in this l)aper ;Is a h'_sis

of co_q)arism_ ralher than lhe average eng'ine life

(the :heart), because the median is determined

from only the early pm'ti,,n of lhe era're (e.ff.,

tier. 1(!) lhat is based on exlmrien,'e and lhus also



FACTORS THAT AFFECT OPERATIONAL RELIABILITY OF TURBOJET ENGINES 43

does not include the number that arbitrarily go

to overhaul because of maximum operating time

(the final upswing of tig. 16). The median is

lhe time when 5t) percent, of the engines of a

sample will go to overhaul and can be read di-

rectly from a cunnilaiive frequency plot (right,

enrve of fig. 14); half lhe engines will _<,o to
overhaul in less than ibis time and half in niore

than this time.

The failure raie curves deierndned for several

engine models as of January 1955 are given in

reference 2. As previously described, lhe curves

h'tve been extral>olated beyond the 1)oint where

operalin g exl>erienee has been obtained. An ill-
dicaiion ,)f how nnlch (,f lhe curves liillSt ]i'tve

been extrapoh/ted can l)e had by eonlparin_ the

linie to overiuull based Oil the actuarial calcu-

lalion with llie operatin K limes oil enD_hles llOW

in service, Tllese distril)ulions are conip'u'e(l for

six ellgille niodels in figure 17. A comparison of

tim life of the 'lveril_e ell_Zille (tim nie<lian) frolll

the acluar]al calmllalion with the nulnl)er all/l

percent of engines in service ]lavin_ lnore oper-

ating lime thali Ibis is shown in table VII. These

dat't are de|ermined fl'om figure 17. For ex'un-

pie, for the A 7 engine the median time to over-

haul (the 50-percent poini) is about-.208 hours.

TABLE VII.--PERCENT OF ENGINES IN SEII.VI(;E

TIIAT IIAVE MORE OPERATING TIME TITAN

PREDICTED LIFE FOR AVEIL%(IE ENGINE

(FIG. 17)

}';ngine
nio(ld

B-3 "A -7

B-9 .... I
B-10 .... ]

(: -7 ......

Time 1o

major over-
hinll for

niedian en-
l_ine

(itcl uaria|
Illet ha(l),

hr

20N
231
74a
25S
,102

Engines ili service lh:tt
hltvo lllOre ol)erai illtg

tillle 1 ]lltll predicle(l

life for tirol'age Oligilie

(el)hlnin 2)

._ lllllber a

142
llS

5S
322
495

1)oreelit

27
27.5

l
21
IIi. 5

=('alelllatcd fronl total nunlber in servi(o :is of Feb. 1955 (rcf, 1(_ and

tahh, II).

The curve of age of engines in service (just above

lhe actuarial curve) indieales that about 27 per-

cent (100--73) of the engines in service have had

longer than o0S hours of operation. Froni the

data for nunlber ill service from table II, al)out

I t 2 of tlie engines in service in February 1955

had operating times longer ihim this. Ihu._, the
actuarial cru'vc <mr to lhe medi'm lime to over-

h'nfl is based on a reasonable amount of experi-

ence. Table VII shows that tim actuarial curves
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generally are I)ased on al)preciable operating ex-

1)erienee out to tile life of tile average engine (the

median) and should be quite accurate in this

r'm,_e,., . The major exception is the B-9 engine

having the longest operating lime to overhaul of

all jet engines. In this case, of the 57Sa engines

in service, ()lily 1 l)ercellt or 58 of lhe engines in

F,d)ruarv 1!_55 had Ol)el'aled 1)eyond the median

lime. Therefore, lhe median mig'ht be subject to

al)lm'cialde ei'r,,r in this case.

The actuarial curves pre(li('t lh;tt many of lhe

en_'iues now in service sh()uld go 1o overhaul,

be('ause ihey have reached lheir maxinmm allow-

able operating time; yet most of the distribution

curves of ligure 17 _h ,w that very few eng'ines

now in service are al)pr()aehing such limes. There

are several l)OSsible reasons for this:

(1) The average munber of hours of oper'tlion

l)er mlmlh for lhese military engines is small. A

Sl)ol check indicated 17 aml o0 h()urs per month

fro" two tighier engines and 24 and 31 hours per

month for two boml)er engines. If an engine

were operated '2(} hours per month, it would re-

quire 3!i_ years to a('eumulate 800 hours of ol)er-

ation, the maximunt allowal)le operating time for

the P;-10 engine.

(!!) When a new engine is introduced into

service, the maximum alh)wable operating time

may be set as h)w as 50 hours :tnd moved upward

as experience is obtained. Thus, the low ol)erat-

ing times on any group of engines may indicate

lhat the allowal)le operatin_ time may have only

re('en!ly been moved Ul)ward, and m) engines have

had lime to :lccunlulate a lar,m., nmnber of oper-

at ill K ho/ll'S.

(3) The actuarial method considers only those

engines that go to overhaul because of "usaKe

reasons." Ten to thirty percent of some models
sent to overhaul were found to have 1)een removed

from service because of "nonusage" reasons (e.g.,
for m)ditication, because the engine was to be

lransf_rred overseas, or because of accident or

coml)a damage).
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CHAPTER III

FOREIGN-OBJECT DAMAGE

P,y LEWIS A. ]lOt_lqCr

SUMMARY

.t _cvicw of U.,>. .1;," l,'o_'('_ scrcb!e records

,_ho,c8 that foreiy,_-object dama:/e in jet e_gifles

i.," a ,majop _nainten_nce and ,_afety pl'oble'm. Few

ob.ieels are htenUp'ed; however, too,st damage is

eav.wd by air-ba,se _'urfiwe debris, part,_ of failed

iMct components, aml ob)ects left by perso*mel.

('c,/rifugal englnc_' ace less vulnerable go dam,-

oye lha_ axial tyye._'. .li_'eraft de,s4gn._, providing

_,._xin_um e_yi_e-i.let height have minimum e n-

_li_le dare,rye. Serec_i._, .for axial-flow engines have

_.# been eff'eetive in l_re,venting damage neeessi-

l./il_g prematu_'e ocerhauls but probabh/ have

l,_'. .e./ed aec'ident._, l' _,c._.li_ml training, improved

.;c-5.xe deb_.;u ce._oeM, avoida_ce of m,ctas ta;c,i

.yeralio_is, _mpror,_d eny;_w ,sc_'eens. and engines

of _'ltgged construction ore ,_..gge,s, led as ,_,emedial

INTRODUCTION

The ingestion of foreign objects into gas-tur-

I)ine engines has been the cause of many minor

rel)'drs , prenmture engine overhauls, and major

air,'vaft accidenls. An effort has been made by

the military services and tile aviatiml indust W to

reduce foreign-object damage (refs. 1 to 3), but

opinions differ on how the reduction may best be

accolnplislmd (refs. 4 and 5).

l_ecords of service experience with gas-turbine
engines and other availat)le sources have been

reviewed for information on tim following ques-
tions:

(1) What is the effect of forei_>object dam-

age on reliability and safety?

(:2) What are the origins and modes of inges-

tion of objects which damage engines?

(3) What efforts have been made to reduce

foreign-object damage ?

(t) What stel)_ should be recommended for

fm'ther damage reductions hi the future!

This repm't :tltcmp_s to answer these questions.

ANALYSIS OF PROBLEM

MAINTENANCE AND SAFETY

"When dainage caused by the ingestion of for-

eign ol)jects is slight, the engine is repaired at

the mainlenance base of the operating squadron.

In a g-month period of 195_ the required re-

working of compressors due lo foreign-object

damage accounled for about 1S percent of the

minor repairs (m axial-flow engines performed at

the squtuh'on bases. Maintenance work necessi-

tated 1)y foreign-objecl damage on centrifugal

engines was less than 2 percent of all minor re-

l)airs during the same period.

.tic Force Technical Orders specify nick and

denl tolerances for gas-turbine engines. When

dam'_ge caused by the impact of an object exceeds

that allowed in the technical orders, the engine
must then be sent to an overhaul base for con>

1)lete dis'_ssembly and repair.

Air Force I)isassembly Inspection Reports

(DIR's) prepared by the gas-turbine engine eve.r-

haul bases during the period extending through

Augusl, Seplember, and October, 1953, have been

reviewed in detail? The sample includes reports

for 2o2 type A engines, 666 type B engines, and

726 tyI)e. C en_zines. Engines A and 13 are repre-

sentative of axial-tlow engines, and engines C are

represen|ative of centrifugal engines. Disas-

sembly Inspection Report Summaries for 1953
and the first 6 months of 1954 were studied for a

further indication of the trends in the problem.

The insl)ection of a gas-furl)the engine during

overh:ufl may reveal imlieati<ms of several nml-

I.;ngim, model nnd dash number_ nro gix'_,n in code to con-

ceal the identity of proprietary l)roduets.

45
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fmlctions. Each malfunction or unsatisfactory

condition found is described in tile inspection re-

port. A primary reason for the removal of the

engine from servi,'e, based on information ob-

tained durin 7 lhe insl)e(-(ion , is indicated in (he

report. .Malfunctions, therefore, are reported

either as ihe primary reasons for removal from
service (,r as simultaneous failures also found

dm'ing inspe(qi,m.

The dal a on the damage by foreign objects were

('Oral)tied "Is (1) total damage composed of both

lit'treaty and simultaneous danmge, and (2) pri-

mary dama_'e only.

In the NACA study, foreign-object damage in-

eluded damage _'aused i))" objects originating out-

side the aircraft, el)jeers prohat)ly left in the inlet

duct 1,y persmmel, oh,iec[s generated by failure

within lhe inlel duct in('luding screen components,

nml ()l)jetqs (if lmkn,)wn origin. I)ama_es caused

I)v objeels g'ener'He(l I)y failure behind the inlet

slweell of engine face were considered internal

failures. Forei_'n-ol)jeet (lanmge was reported

mdy when a nick m" dent was el)served that was

,'1early caused 1iv the 1)assa/e of 1171object through

(lie eugine. If an unexl)lainable major internal

hreakul_ of the en_zine h:u[ o('cm'red, nicks or denis

(m (he t'_,t'tt in,_ part s were vm_sidered to have been
caused l_v debris t'r_ml the m_kn()wn failure an(l

not hy foreign objects.

The ellVilles Wel'e divided according to l)rimary
cause fro" removal frmu service under the follow-

in,, headi n.,.z,s:

(l) F_)rei_n objects

(2) tither factot_

The criteria for category (1) have been noted

previ(,usly. Catego W (_) includes engines dam-

:1get1 _s a result of internal failm'es, real from/ions

(':ttlse( 1)y persomlel error, dam,tges caused by

crashes or accidents, engines ovel'lmuled for un-

know_ causes (primary failure not identified),

en/ines renloved fr()m service wilhou( al)l)arent

damage, "rod malfunctions result in/ from acces-

sory o" control-system failures. The COml)ilalions

were made for all engines of each model irrespee-

live of engine dash number and previous overhaul

experience.

The inspection of extensively damaged enghles
frequently fails lo lead to the identification of the

inilial failm'e cause. The ditticulty of the inspec-

t im_ is increased if the engine has been subjected

lo the impact of a crash. For these reasons, not

all engines danlage(l 1)3" foreign ob.iee|s have been

so lisltd in the compiled dat'u The resulls, lhere-

fore, nre in error, lhe l)rol)lem being of /realm"

m'tgni_ude than indiented by the overhaul records.

Information contained in the DII_'s on damage

and merhauls cau._ed in en_sines A, B, and C by

f.rei_J ()l)je,qs is stmmmrize(1 in table I. Most of

_he tel,erred damage 1o engines A and 1)) w'_s in

llm ,'o_ q)ressor. Most of the lovelorn-object dam-

age _() engine C was in the form _)f nicks and

dents ¢_n ire'lithe-see!ion components.

The Air Force I)IR Summ'u'ies provide addi-

l i(mal :nfovnmtion on the frequency of l)remature

overha _1 ("rased 1))- forei/n-ohjeet, damage.

Thirty Iwo percent, of all jet-engine overh'mls in

1_,)5.3 u ere prematurely caused I)3' forei/n-ol)jeet

(lama/,.. The peT'eenlage of l_remature overlmuls

TABT.E I. -SUMMAI/Y OFFOIII,2IGN-OB,IECT DAMAGI,; XNI) JI.;T-ICNGINE OVEIIHATU, CAUSES

]';ngin(, A ! ]'_nginc B ].;ngine (? All
Foreign-_hjec_ d:mtagv

N_mber I l_"cent I Num_(r 1 'r, ._1 N_I ).r : ](.rc'nt Num)vr l_,r',_l

]):tilt I_('(| ...... tilt , 7,) :_66 _ _..i 43'_' ti,q ' 1.0'-'5 ' t_-I
Not, Damaged_ ")') , -') "_1) i " ') ,.{-I .1_ aN.! ?, ,

{ -- - -- .... i . _ . . .e ...... ! ._

Total ........... 2:2:2 ] 100 6till ! I(() ' 72(i 100 ! 1, (il.l ! IIR)

()Vt'l'llltU[ ('it list'S

],'or_,ign otij(,cts ....... 119
Olher faeiors__ 103

Total ........ _ 222
I

53
-17

25l
415

:8
(,:2

110 15 [ 48t) :/[I

i 011; _5 l, 13.1 , 70

726 11)(I [ l, (il4 100100 (ifili 1(_0
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due to foreign objects in engines B increased froth

38 percent in 1953 to 42 percent in the first 6
months of 1954.

The hazard to flying s,tfety created by the in-

gestion of foreign objects into gas-turbine engines

cannot be evaluated directly ft'onl engine-overhaul

>tat isties. Foreign objects may have caused major

jet-engine aircraft "tccidenls, but con fusioll of the

debris usually concealed the evidence required to

1)rove the fact. Studies 1_5' the Air Force Direc-

torate of Flight Safety Research have led to the

slatement that "axial flow compressor failure is

1he largest single factor eontributin_r to the jet

engine accident rate. Foreign object damage and

metal fatigue in compressor ro[or parts are prin-

0iple [sic] factors in these failures" (ref. 1).

Therefore, it is important that foreign-object

,l'unage be reduced in order that jet-engine main-

ten.race problenls 1)e minimized and tli<._,'hi sqfeiy

improved.
OBJECTS IDENTIFIED

TIw ol,jects llmt (huna_ed tim engines are listed

in tal)le II, insofar as hlentilieations were made

_>r inferred in the I)IIFs. The identifications are

l,ased on the f(Alowing:

(1) The object was found in the damaged en-

gine or otherwise positively identified.

(2) The ]lallll'e of lhe (lam'/ge indicated the

kiml of ol@ct responsible.

(3) A missing part from the inlet components

cm|hl have caused the damage.

The significant observation to be made from the

information 1)resented is thqt comparatively few

of the objects that damage engines are identitied

(lable II). Large objects nlay eallse major break-

ups of enlzine interiors or aeeidenls and then t)e-

come lost in the debris. Small ol@cts may pass

throug]l the engine and 1)eeome lost. Pebbles and

olher fran_'il)le objeels lnay /)eeome broken into

very small pieces and nmke identitication improb-

able or of dubious v'due. Much of lhe damag'e is

tlwrefore attributed in lhe official reports to ob-

jeels of unkn,)wn origin or idenlity.

Rivets, screws, special fastenin_zs, and sereen

segments that fail and/or become loose in the en-

g'ine inlet are tl_ known source of damage. Spare

paris and mettdlic debris left in the inlet by

manufacturing', maintenance, and oper.ltin-" per-
somlel '/re "also known to have eontri|mted to the

problem.

The DIR's indicate that most of *he damage in

engines sent to overhaul bases is of moderate

severilv in lhe fornl of nicks 'rod dents, the depths

of which exceed limits specified 1)y Air Force
Technical Orders. The sizes of the nicks indicate

that most of |he damage is done by small ol)je('ts.

Small ot,jects _enerated by lhe failure of inlet-

TABLE II.--II)I,:NTII,'[I,:I) t)BJECTS CAUSING I'REMATt'I{E (WEIOtAI+I, O1: 1,;NGINI:S

<)b jeers

P(,rcent

i Illll_)('I' of engines
ov(!r-

hmlh'd

Objects

Engine A I+;n_ein(,B

Screen segments __ ......... 23 19. 3
]locks and pl!bl)h!s__ 5 ,I. '2
PJatth' (hd)ris ...... 1 . S
l.fnkllo_v ]l_

_., • 1 (_.1 |(RI l)
!ill . 75..7

Tot :d__ i I
/

l Engine ( :

Tool ..............
171_ktmwn .........

0. 9

Metal pieces ..................
R.ocks and pebbles .............
Screws and bolts .....

Failed paris .......
Safety wire+ ....
T_ot_ ...........
Ch)th ........................
B:tt.tlc debris .................
Bird ....................
Aninml ..........
[_llkllOWll ........... 4

Total ..........

109 !)9. 1

I 11} 1(10. 0

i

|)('rc(!ll_

+NTIIIIL})(!I" of cngill(!s

(}VI!r-

lmuh'd

O')

17
12
l (/

(i
5
'2
1
1
1

174

Kg
6. 8
4. ,R
,1 11
2 -t
2. 0

.8

.4

• 4

• 4

69. 2

i ..... , ....

Total .......... '25I 100. (I

.MI on A 7 i,nginvs.
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{ha'_ {'Oml}Onelits "u'e somelimes hhmtitied (table

It).

Large (}bjec{s (h} not pass []n'(}ugh the engines
aml are therefore found unless a ]najor accident

Pesult_ ao_d the evidence is lost. Large objecls

such as h}ols, failed l}arts, and spare l}arts left

in 112{'engine iulet have been identitied, allhou_h

COmlmraI ively in frequent ly (laMe II ).

()l}jects left i,_ enKine inlels, includi]tK tools,

lm PIs, nnd scrap, during tinal 'tssembly 'rod I}rel}a-

Pali{m for inilial tli_hi tt'slS 1)y aircraft manu-

t':o'lUPel's a tl{l oveP]_0._ll :l_{'ncies m_/y consiitute

I lw m:|j{}r cause {>f daIna,,£e when muzhws are

iniliallv operated, l}{,l_l'i: from the air-base sur-
face, in,'ludin{_ l}ehhh's, c{mcrete, and reel allic ob-

.iecls, is believed I{} cnuse most of {he damage

:lfter life ell_1"il'tes ]lave heel] placed ill service 1}3'

the ,q.,ratin,,z a a'eneie_.

MODES OF ENTRY

lh, feren{'es "2 and a indicate 1}ossil}Ie ways in

whiI'h t'oreip_n {d}jecls el2iel" ell_il2es. The 222o{1e

{,f enI rv {}I' objecls o't.]lel'ale(I oP ]eft ill the en_ille

inh'! is self-evident. Airl}or{ debris may be

ldown imo en_'ine inh,is by lhe blast of olher jets

or may be thrown in hv landina-gear wheels.

I hlwr ilnestigations of the modes of entry (refs.

1, ft. aml 7) conclude lhat the en_zine "fir-inlet

stream, unaided by outside influences, will not

c.:tllse the investion {}f ,}l}je{'ts froln the ground
.,,tll'['aeP if tim airfl{}w is uniform and undisIurl}ed

l_y vorlex formations.

The ingeslion ot2 fol'ei,An objects from the

grotuM /}v vorti{'es formed bet ween the engine in-

let and lhe _zround was investi_aled at the Lewis

lal}ora{o W (ref. S). The presence of vortices is

evidenced by dust and water whirls and oeea-

simmllv by visihle cores (fig. 1). The visible core

of a v(}rtex formed at an engine inlet is composed

(if ('(m(lel_sed water droplets. The condensation

{}f t]lese droplets results from a static tempera-

lure equal to or h, ss than the dewl}oint tempera-

lures at the vortex-core pressure. The reduced

lemperaiure in lhe vortex core is indicative of a

hiw-lm, ssure region.

The NACA study of ingestion by vortices

showed that "pebbles, tyl}ical {}f objects that dam-

age je{ engines, were projected into the air hv the

vortices and were drawn into the engine by the

hivh-veh}city inlet-air st ream." Vortex format ion

["ll;l'gt I. V{}rlcx [{}1"111:11i!111 };{'i\t. Pt.ii :lil' iHh,1 _,f _as-

llll'ilillO {'11[ till. :*lid :t{I.]:tconl ]}l:tn{, >lll'[_l{'t,.

del}en h'd {m envi,m speed, envim, hei_zhl_ and

surfa{e wind {ref. ,_,). The l>ossil}ilitv of in-

,'.Zestill.£" ;til'l}{}l'i surface delwis is {'nlmn,'{,d 1)y
{ 1 ) ll,'reased e]}g'ilw speed

{L_) Increase{l e,@ne size

(;;) lh]duced envine-inh,l hei,/_],t above the

_'P{ }1111. t sllr fa{'e

{t) lh'{hwed wind ,}P laxi Sl>e{,I

I'el>bl,s {m smooth surl'a{.{,s are less likvlv I{} be

l}roje, led upward into the inh'{ 1}v a v{}l'lt'X thai2

when they are h}dm'd in a ,'Pa{'k, Wl,m exposed

{}ll it SltlO{}lh sllrfa{'e, ilte I}ehldes "¢_el't_ swept
ilsl(le ])V |lie cirPll]al' ])ll}I_iOD omshle lhe vorlex

urn'{, }m were n{}I l}r-je,'led Ul>ward. l'el}l>les
h}dg'e,l in Cl'II{?],:S :llllI {]IllS {'{>nstrailm{I fl'{}l12

]alel'121 2uoli{}n "0,.i.q.e l,rojecled ira,, lhe itir when

a V(ll'lex ('(}re passed over [he crack.

'l'lllls, t','om avaihthh, ill t!Ol'lllil.liOll} the lPtt22re

aml ] m{h.s of emrv {,t' t'_,reivn {d}je,!Is of 2lt:2i{}I"

iml}inlance nre as f,,lh}ws:

{1) Inlet {'Oml}{}nelflS released 19" failure and

th'aw]t into the enKine

(2} ()hjecls left in the inlet by l>ersmmel and
{h'aw}_ int{} ihe en{.,'i]]e

(3) Air-base delwis lhr{}wn into tim engine

inlet i}y tile blast of olhep jets ,}l' aircraf_ brad-
in .... ,,,ar wheels

(4} Air-base del>ris inKested bv engine-inlet
VOI't ices



FACTORS THAT AFFECT OPERATIONAL

DAMAGE PREVENTION

The damage caused by the in/estion of foreign

,3 2jeers into gas-_url,ine engines may I)e reduced
by tlle following':

(1) Ru/gedly const rmqed ell ffilleN

(2) Aircraft design, particularlyire'teaseden-

,gim, air-inlet hei_zht al)ove file /l'OUm[

!3) Air-1)ase ('onsfru(qion and opevati(m

t 4) En/ine-inhq Scl'eellS _llld illelq ial Sel)arat ion

&'vices
RUG(;ED ENGINE CONSTRUI:TION

Tl,e vu:_,':_,'edllallll'e of the centirfu,.z'al engine (2

i_ indicated by the data ill lable i. Foreign-

,_l,iect (]alnam, occurred ill ;S pet'cenl of lhe cen-

lrit'uwd on/ira's aml in an avel'llge of (;0 percent

<,f tilt' two axial-flow eng'ines, llowt, vel', f<wei<,'n-

(I]kiect dallla_'e w-as IhP i'tlll,,.:e ()f l)l'elllat/lre f)vet'-

haul in only 15 1)ercent of lhe ,'enl ri ftt/al engines+

a< COlllrasted with 11171)111 -12 lml'celll ill the axial-

tl, :,v en/ilws.

New axial-tlow engim,s I)resenlly colnin,/ into

,.-el'vice are expecled 1_) 1., less vulneral)le, but

,evvico dala are not vet available on tlmse eng'ines.

.";1.,culation on re(lm'ed vulneral)ilitv is 1)ased on

lhe l)enelits Io I)e derived frmn &sign fea_m'es of

The new engines, several of which are

(1) Loosely held CmnlWe.,.sor blades that will

redu('e iml)act dama-/e

(:2) Increased safety faclors in l)la/le (lesiOn
that will extend tlm nick loleran('e ()f 1)lades

13) Shrouded sital(Tl' lda(h,s lhal will lend lo

arresl the 1)r(711a_'alion ()f dalm/p.'e (hr()u_h 'ul

axial-ttow c()m])rebs(n'

These facl()rs tend to vedu('e lhe ]mzal'd caused

I,v the in_'estion of fl)reio'n obje('ts, lh)wever,

whenever a 17lade is nicked, relTair will still be

lw,'essal'v before Ill/hi is 1)ossible.

T(7 el)lain high airth)w per unit fronlal area

and high pressure raft() per slage, coml)ressor

,h.si_n trends (Tf the flliltl'e are expected to in-

.hide longer blades (high tip to hub ratio) and

hi/her rot'ttin/sl)eeds. Both trends will increase
blade slress and hence reduce blade factors of

safely and will require iml)roved materials and

eonstru(.tion methods, if future engines are 1o 1)e

less ruiner'tiTle to foreign-object damage.

AIRCRAFT DESIGN

The types of aircraft in which the engines were

installed were indicated in the reports of most
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engine inspections. 'l'lwse data lllade possible an

almlysis of aircraft desi/n effecls on lhe fre-

quelwy of jel-enaine damage. The following
fa(ffOl'S wel'e eXalllil/ed :

( 1 ) Lamlin_-_ear wheel hT('at ions in l'elal ion to
en_'ine-air-inh,t hmali(m

1o) lleight of eno'ilm air inlet al)ove _'r()ulld

surf:ice in gTOul.l el)crating con(liti(m

N() ('onsistent ('ban res in (lanul,,'e rales vvei't, f(mnd
,'-v. :.-,

t'()r wide varialions in wh.'el hT,'a_ion, i,.lic:uing
thai ol)jec/s tossed u17 by wheels are resf)onsible
t'_1' little dltma_e.

Tim relation _t7 en_'im, dlmlag'e It)Ill(, (lislan('e

l't'on_ lhe en,.zim, air inlet 1() flit! gI'()llll([ Silt'face

m' en,,'ine.., heiahl, is indicated in ti/m'e _.;) The

resulls of lhis analysis show lhat lhe pel'centage

(_t! ew/ines dama,,_e,.l in lhe various aircraft in-

('l'eltst,(l as tim hei-/ht of 1]w engine air inlet tie-

creased. Variali()ns ill engine heig'ht probably

alt'e.1 the ing'esli()n of objects picked u17 t'ronl lhe
Ilil'-I)llse Sill' faCtL

The study ()l' fol'ei/n-ot@ct in/esti(m 1)v en-

,L,'ine-inlel vorti('es (ref. _) indi('ates that the

maximmn hei_'ht ill which a vortex will form

I)etween lhe inhq a,M /t'ouml (lelTends on the

()l)eralin/ power of the en,.,'ine, ln,'reasin/ the
])owel' l'eSll]te([ ill file f(wmalion of vorlh'es at

g'reater heights. The use of higher lTowered en-

_im,s mounted ill 1win 1..ls is 1,elieved to pro-
vide lilt)re t'avol'al_]e conditions for vol'lex f()rllla-

lion and may 1)()ssibly resuh in It hi_her damage

l'ale II| a givell hei_hl than in(li('aled in tigure 2.

The details (7t! lhe air-inhq duct (lesi_'n ean also

affect tim fol'ei_'n-(71)je('t lwot)lem, l)esiTn in-

,.z>nuily aml sat'ely mar:_,'ins determim, inlet c,Tnl-

-_ .,- IOC
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1 1eo eb ,bo ' ' '120 140 160

Engine-inlet centerline-to-ground distmce, in

FIr:_P,.E 2.--Variations in damage to engines with engine-

inlet height l)loll('d for several r(,prest,ntat, iv(_ Air Force
aircraft.
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l)onentfailurefl'equem'y rates.The configuration

of tilt" duct determines the ease and efficiency with

which inspections may be made for objects left

in 1he inle! by 1)ersonnel nml also affects Ill('

etllciem'v of the engine-inlet screell installation.

OPERATING TECHNIQUES AND AIR-BASE CONSTRUCTION

The "Nan,e and I,ocation of the Last l+sing

Aclivi|y" of the en_zines for which inspection

rel)orts were amflyzed indicated tile local base or

region where each was ol)eratt,d. ()l)eratinven-

viromnenlal fa,'tor: 1,elieved to influence fot'ei_n-

,d@(.t damage include the effectiveness of debris

l'elll()Vll]+ lIIllSS t.lxiin<_,._ and takeoff lllt/llellvel's. Ol)-
eratin_ IH'rsmmel etticiem'y, and air-lmse surface

nmlerial. F<)rei,.zn-ol@cl (lal,mve was e<,ml)iled

f,,r engines installed in vavi.us airvraft for tilt

various air lmses desi_mtled as the "lmst l+sing
A.tivitv.'" Foreign ])rises alld l)ast':,fl'+ml which

fewer than fen en_int,s had l;een re('eivedand

i1_speetedwere nol anulyzed in the sludy. The

resultsof the analysis ,d'ett_:im'sB damaved by

foreign objects are given in t:d)le III. The data

_x_'t't" an:dyzed for each "drcrafl to avoid complex

intern'lati<ms with ell'eels of envine hei,_ht _iven

in li,.zm'e '2. Foreign-<)l)ject danm_e to enffines B._>, or
' ' airp )rl. '_

varies _)x'er wide rttn_'es with xaritltit)ns ill base

<)f .l)erati<ms. As m,it,d for 1,omlwv aiI'eraft B :2

aml I_ -I. lit(, entire, damage rate at s<)me I)ases

I,mv 1)e twice =IS _I'ea| :IS tit others. The varia-

thm <,1' tivhter-en_ine dtllllll_'e with t>ases is sig-

Ilitit'ttllt l:,llt II<)t :IS large as for the boml)ers.
The study imti<-ates tha_. the overall dama<,'e

(':utsed I)y forei,dn el)jeers might be redu('e(l by !

universally applying the opcralin_ tevhniques and
air lmse c<mslructi<m methods followed at the

Imses ]mvin_ the lowesl l':tlO:'-. The f,,llowing
ttcl iOllS are suggested : . +

11) l)eveh)p surfa('e-('leanino' devi('es Calmble

of c()vet'ilI_ + the lt/l'_e =(re=is of tilt =tit" base ill a

sh(wl time aml removing till debris, int'lutling

ol,i(.,1s h_det'd in cr:lcl,:s

_2) Avoid mass taxi and takeoff maneuvers

13) Train persomwl to inspect for and remove

olLiects in inlets and <,n vrouml under inlels in

rllll-ll[) tl l'elt s t '.2)2

t4) 1.;linfinate airport debris by the develop- , ---;
merit of inq)rmed materials and conslrtt(.tion :+s

l('C]llli(llles • l)VllO o,I l>y co, Iv h,th,r,
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Invesl gations of runway surfaces should include

a sear(h for materials lhat (1() not generate debris

whelI :;tlbjecte(| to repeated freezin_ (3,ch_s, heat-

ing ('._ch,s from jet exhaust, fuel spillage, and

()thel" !'ornls ()f ,lestrucl ire exl)osure.

SCREENS

The use <)f s<'reens as I)rotect ion a_:tinst damage

to gas-turbine engines by foreign ol)jecls is a

(!()lHro,'ersial issue. In SUl)l)<)rt of screens is the

claim hal tilein_'estion of large objects that can

cause ,'omplete and sudden enTine faihtres fol-

lowed by =lit'craft aeei(lents may I)e prevented by
the us,+ of screens. In 195 ° the removal of tixed

s<:reeus fi'on_ most Air Force aircraft due to icing

difficulties was ace<mlpanied 1)y a sharp rise in

m:tj()r accidents. When retractallle screens were

]aler installed, tlying safety inq)roved, indicating

thai II e use of screens had prevented the ingestion

<,1' .1)j '('Is lhat can cause accidents (ref. _).

TABLI; III.--AIR ]LYSES FI/OM WIII(?I[ 1)AMAG],]I)
ENGINES B WEIIE lll.N:I.;1VI,H)

Tol'd sent

to ovtq+haul

1

28

27

23

21

15

10

, I_.l

i 3o

,: 111

_+

I 95

*',t I-I

Forei_zn-objt'rt ([:tllll_ _o,

IJt'l'('('II I

]*,oln})('i

B .I

91

7_

71

G7

50

47

:{6

l+,,mflu'rl:iM_ter
B-2 I:-3

79

74

61

6(I

53

5O

2-I



FACTORS THAT AFFECT OPERATIONAL

Nevertheless, strong objections to the use of

screens have been raised (ref. 4). The arguments
against (heir use are

(1) Air-pressure loss :wross s('reens reduces

engine thrust and moves the condilion of engine

operation closer to the stall reo'ion of the eom-

1)ressor.

(2) Small olJjects 1)ass I)elween screen elemenls,

aml large high-vel()(.iIy ol)jects break through nml

cause engine damage.

(3) l_etra(qable screens as 1)resently designed

and ol)erated dum I) (he ('ollecwd (h,l)ris in(() (he

engine when (hey are re(rac(ed (lurin_ IIi_h(.

(4-) _Varl)e(l screens l)eeome inefficient, and

those that fail in fati#zue l)rovide an ad(litional
source of en(,,ine (lamao'e

(5) S('reens are vulneral)le to icing and add

weigh( and ('()ml)li('ati<m.

Screening effectiveness.----Se(.tions of s('reens used

on ('en(rifu_'al (,n_'ines are shown inslalled in

tiffure 3. Fixed screens u.,ed ()n early 'lxial-flow

en_'ines "11'(, sh()wn in li_'m'e 4, and a relractal)h:

s('reen is shown in li_'ure 5. These s('reens are

rel)resen(a)ive ,)f e(luil)ment devel()l)e(l and used
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over the past several years. Oilier s('reen equip-

merit is current]y under (levelopment 1)y the aria-

(ion industry.

Centrifugal engines in (tie present s(udy were

tlt(ed wi(h screens shown in ligure 3. The ram>

1)er of engines tilted with each screen, the mesh

dilnensions, an(l (he percenlage of engines (lanl-

aged 1)y foreign ol)je('ts are given in tal)le IX'.

Early m(,dels of (he cenlrifugal engines were

lilte(l wi(h (lie fine screen having 0.132-im'h-

S(luare openinTs. More re('en( engines were tit(ed

with (he coarse s('reen havin_ 0.21(i-inch-square

()penings.

The (w() screen ()'Des were insl)ecte(| af(er

servh'e on engines in N3.CA research 1)roje('is.
'|'he llne mesh screens were in exce]lent me('hani-

eal ('on(li(ion after extensive usage; the coarse
mesh s('reens were deleriorate(l. ]_roken wires.

enlarged mesh dimensi(ms, and |ar_'e edge ('lear-

)Ill('(' [)('(V¢(q')l S('l'eell all(I_ ('ll_ille fl'allle l'esii]led

in openings 'is large as 0.50 inch in (lie coarse

mesh screen (tig. 3 (b)) through which ol)je(:ts

migh( ])ass. Thirly-six l)er('em of (lie en2"ines

with ihe fine mesh screen were damaged, while

lil

III
Ill!
III
lima
ii

III
If

HI
Ill

illllli
II ll.l.li

|I

(o)

F[(;vm,: 3.

(a) <)l)enings 0.132 inch squ:u'('.

Ib) ()l)enings 0.216 inch squat(,.

Fix(, ! air=inl('t ,,,ere(ms (m v(mtrifua:d (m':im,-.

(b)
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t"l_t'.+E 4. Fix_'d iuh't scrocn> _m _,:trl: axial-ilow engit,,s.

S4 l)ereent of ilL(, engines with lhe coarse mesh

w(,re damaged, which indi.'ated the need for
small seree1_Ol)(,nin_': and [h(,iml)Orlan_'e of con-

sll'llCliOll delails t]lai ensul'e I'('liabilitv ill SCl'_,!ell

design.

TABLE IV. FOREI(IN-()ILII,XTF I)AMA(-;E TO EN-

(;INES C '_VI'FIt VAI_IA'FI()NS IN SC, IH_EN IN-

STAI,I,ATI()N

239

Engine

(' l t_) 4

-[g7 (' 5 _o 7

I

l)erct,nt

S('re('n insl:dlnlion i of (ql-

gine:

damaged

Fixed, (k034-in('h :_(;
_vir(' (tilllli('tl'l '

_l):t('('d I). 16(; inch
.n ('_,ui_,r _iving
11.132-inch-_'(lu:_r('
"I"'niu_: (ilK. 3(a)l

I"lx('(l, O.(13-l-itwh S l
wir(, dianl_.t(,r

Sl)aCvd 0.250 inch
()xi evzli(.r.,, gi','ill_
0.211Li n c h-,',tlultr_'

oi)(,nin_,_ (fi_. 311111

hlsltticien/ (lala haml)et'ed lh(' slu(1v of the

effecli,'eness of screens fin" axial-flow engine_.

The ])IR's show that about 40 ])ereen! of all

axial- h)w-engine overh:mls are 1)remaiurely

cause(: I)y foreign objects. Thus, lhc general im-

ldi,'q! on of if,, results of the present study and
of ill( ,lata in the Air Force 1)IR Smmnaries i_

thal s'reens are ineffective. While present axial-

lh)w-e,agine SCI'OIqlS 111113" lWeVent :leci(lents, 1}le

maiut,mtn('e l/rol)le]n due lo the ingestion of

f()l'ei_n ol)je('ls slill (,xi:l,_. These ol)servation_
are ('( nlirmed l)v lht, r(,sulls ()f)tir For,(, slttdies

(,f 11. n('t'd for S('l'('_'n iml)r,,vem(,nts (ref. 2).

Per:ormanee penalties.--The inlet screen acls "_

it resl 'i('l ion in the engine in]el and ('aus(': :1 re(hw-

lion i 1 thrust due, to reductions in air weight tt()w

and 1 t'essm'c ratio across the engine. The slati_.-

lhl"uS l"eductioll caused l)y inlet-,_'reen pressure

losse_ has l)een ('Oml)uted for (,u_rine P; Ol/eral inff "tt

:1 sea h,vt,1 slalic l)ressure of 2,11t; pounds l)ur

;quar, fo<,¿, a nozzlt,-outh,t _eml)(,ral ur(, of 1.7tO °

R, anl :1 nozzle pressure rali(/eft ].!)l. For _ln'dl
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]:icH_-:5.- l{etr'acl:dfleinlet.-,ereonsonreeenlaxial-flow
,,m-:im,.

inlet lwessurelosses±1',, the thrust lo.,,s .x/_'1

for engine B is given by the equation

,_Xb'_ . ,...X]'_
-/"i - 1.,',,, t', (1)

in which 1,': is the normal thrust and I'1 is the inlet

total pressure. The relation of equation (1) is

shown graphically in ti_'ure 6.

The pressure loss across an engine-inlet s(,reell_

composed of streamlined se_'tion elemenls may be

computed from the eqmltion

',l'-: ('n

in which

P

C

8

¢

,/ _2)
X

pressure, lb/sq ft
section drag coeitMent
section ohm'd, ft

seotion spacing, f[

dynamic pressure of tlow through screen,

ib/sq it

The desi,,,.'n of screens involves _eveval con-

ftiotin,_ requiremenls, as may l_e seen from equa-

lion (2,). IIigh impact Stl'el-igth requires large
screen section chord and thickness. Thicknes.s

is important when objects strike between the see-

lions. High resistance against vibration stresses

also requires lArGe thicknesses. Iligh screening

effeetiveness, however, requires small screen see-

lion spacing; and low thrust loss requires large

spacing and small chord, location of the screen
in a region of minimum velocity, and a nfinimum

drag coefficient.

The drag coefficient depends on several addi-

l ional factors, ineluding chord-thickness ratio,

chord-spacing ratio, Reynolds number range, and

aerodynamic smoothness. Turbulence or llow dis-

tort ion may cause lhe stre'lmlines to deviate from

the angle of minimum dra,?.." with the screen and

thereby increase the pressure loss. Therefore, the

pressure loss aeross the screen also depends on

the design of the air-inlet duet.

6

5

_o2
OdZ

2

I

I I l
0 i 2 3

Screen pressure loss, Lx/:'i,percentInlet total pressure P,
l:Ic, tmE 6--Thrl>'t lo_s caus,'d by inlet-air sereml.
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The effect of engine-inlet screens oil the pet'-

formance of an F-S6I) airl)lane was investigated

by the I;.S. Air F(u'ce tref. 9). The report slates
tlutt "a static lhrust calibration showed that ex-

tending the inlet screens caused a blocking effect.

on the en/ine air-intake ducts which resulted in

a loss of thrust under sea-level standard day con-

ditions, of 3.3% for the 'Military l'ower' thrust

select.r p,_sition (afterburner off) . . " The drag
c_,etticient for the F--_6I) aircraft screen cora-

l>reed from the tllrust loss and the screen dimen-

sions (substillfled in eqs. (1) aml (o)) is about

1t.145. An experimental en_ine-inlet screen (ref.

10} gave pressure losses corresponding to a drag
coetlieient of about 0.06. This screen was of the

tixed tyl>e 'rod was mounted in a laboratory duct

selul). The F-S6l) airplane screen <lraff is greater

than ih'tt of the experimental screen, 1)robably
l>ecause of lime distortions and turbulence in tim

airl>hme :tit" inh,l aml/renter aerodymunic rough-

ness .f the service equil>menl. A review of avail-

able ],:llowled_e t_11 l)l't,_slll'e losses aeFoss screens

aml _ri(Is (ref. 11) shines tim need for ad(titional

drag" _[ala on screens of streamlined sections.

Elroris to iml>rove screens shouhl be 'limed at

the folh)win/ desiffn objeclives:

(1') Aer_)dynamic:tlly sm,,)tlt _-,'I'eens :rod inlet
41u,'ts

('2) l'mlistorted inlet airstreams

t3) Low-veh)cily screen location

(l) Small se,'li,m spacin/

(2)) llettmti()n ,)f .I).jects ('au_l_l

(6) Slru<'tural ruo',.zedness of sel'een

The achievement of these /oals will ovel'come

lllosl ()fllle ob.iecli,ns 1o :,'re,ms lisle<l previously.
Efforts lo impr, we en/ine proteclion should also

i]wlmle c, msi,leration of im_rtial separating de-

vices. Im','tial sel)aration <>f ol).ie('ls in eombin't-
(i()n wilh the use <)f Scl'eellS is also of interest

a]non,_ the possilde v,ays ()f solving the pr<)l>lem.

Ground run-up screens.--The military services

have :tltenll)led lo reduce foreig'n-,)bje('t (la]nao'e

1)3" lhe llS_2 i)f SCl'ppllS attached ()lily dllFillo' s()llle,

eltffille g'l'Olllld ol)erations (l'ef. 1:2). The follow-

in;r ffrouml-st'reeta prol)h, ms were reveah,d in col-

lecting data fi,r this report and in interviewing

pel'St)llllel :

(1) Ground screens impose high pressure loss

and tlmreby prevent rated power operation of

engines. All engines must be operated at rated

speed in order to make fuel-control adjustments.

(_) Screen mesh openings are not small enough

to stop many objects.

(3) Ground screens that are large enough to

reduce pressure losses and that have small enough

mesh lo stop all objects are bulky and cause a

hazard to personnel who apply or remove theln

from ,,perating engines.

Perhaps future improvements in other methods

of prc lection will elimimlte the need for ground

run-up screens. In the interim, however, ground

screens are important in protecting engines

•tgainst, foreign-object damage, and their con-
timmd development is needed.

ADDH'IONAL INFORMATION NEEDED FOR IM-

PROVEMENT OF OPERATIONAL RELIABILITY

Redmtion of foreign-object damage to gas-

lurbin_ engines may be effeeied by further engine

develo?ment, airplane design, improved operatin_

teehni,lues , and special protective devices such

as SOl*CellS.

FOR IMMEDIATE APPLICATION

S()II e llleaslu'es lnay be al>l>lied fl'OUl existing

knowl,,d_e with liltle or no equipment develol>-

ment, while others will require ad(liti,)nal in-

f()rma i,m and devehqmmnt. Tim followin,/

]neasu 'es are su_rg'ested f()r inmle<liate apl)lica-
[ ion :

(1) Improve and unif,rmly apply trainin/and

Sul)er_ ision of ma]mfac/urin/, ]ntfinlenance, and

Ol)erat n,/ 1)ers<)]mel in e]_ffine-danmKe avoidance.

l:,nll}]l Isis should ])t_ 1)l:/ce(l .n l)refliffht insl)e<'-

lion ,:f en_ille inlets and g'rotmd ;II'I)i/S l|II(|el'

enghle inh, ls.
(2) Improve debris removal t'r<ml Iz't',nuld op-

eralin;c areas, p:irticul'/rly from paving cracks.
lind e] milmle soul'<:es of del)ris.

(3) Av.id mass taxi aml t;tke,)ff Illllllellvel',,..

an,[ _lher _q_eraliollS that caw+ debris l-1,e

throwl_ into en/ine inleis.

(4) Emph)y 'tvailalde /round aml engine-inlet

SCl'et']l:; :Is IlIllC]I llS l)ossible.
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(5) Inspe(.1 engines carefully after each op-

eration for screen danmge and nicks and denis in

Ihe enlerin g stages of lhe ('_ml)ressors. Insitec-

ti(m of all l)lades would be ideal, but in absence

of a 1)ra(qical method 1)v whi(_h this may be ac-

,'omplished in current enKines , a si_niticant per-
centa_'e of damag'e can 1)e (Metred from the

inspe(.tion of enlerino" sla_'es an(| SCI'PPIIS. Elliel'-

i_l#a' stages are lhe most hivhly stressed, have the

lowest factors of safely, and are most vu]nerable

Io f()reign-object damage.

FOR FUTURE APPLICATION

:Measures I() be recommended and on which
a,hlit i(mal infm'mat ion is needed are :

(1) Improved air-base cleanin K equipnlent,

(2 I) ]h,(lesigned pro_r'm_s for the elimination

()f unrelial_le air-inlet, cmnponenls "rod faslenings
that, ("m release objecls and damage engines

.)

.,) Improved engine-inlet screens

Information on screen drag should 1)e 1)rovided

for variations in screen geometry 'rod I{eynolds
mmA)er to enable designers to achieve the most.

fav(_rab]e compromise bet_ween 1)reservinv nmxi-

mum thrust and protecling a_ainst dan,age.
Inveslig'ations s]louhl also be ma(le of the effects

_)f s(q'een location on inlet nil' pressure recovery,

uniformity of tl<)w 1o the enKine face, and ice

l>revention. The results shouhl enable designers
Io sele('t lhe most favoral)]e screen h_('ation in

,'onsi(leralim_ ()f all the problems and the types
{_f ;/i l'Cl'll ft in V{)]re(1. A ls(), insl't]lations tlmt take

advanlag'e of inertial separation shouhl be
slu(lied.

Nince n() sinTle material ('mliains the optimunl

,'haracteristics re(luired fro' (,)mpl'essor and tur-

16he bl'lding, il is possible thal the ruK_edness

,)f sudl 1)ladin_ _'an ])e improved by combining

several materials into a eOml)osile slructm'e.

Thus, the various conll)(ments may individually
(',mtrilmte t() slatic strenglh: fatigue streng'th,

al,rasi,m l'esistance, internal damping', and so
f()rth. Research shouhl be undertaken |o (Icier-

mira, lhe optimum eoml)ination of m'llerials 'rod
the struclm'e inlo which they should be assembled

in order I() l)rovide the nmximmn resistance to

(lenling and the minimuln redu('tion in life when
denl in,./" occurs.
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CONCLUSIONS

The ingestion of foreign objects into jet en-

gines is a lhreat to flying safety and necessitates

maintenance on many engines which otherwise

wouhl have remained in service. Few objects

thai (l'unage engines are idenlitied. Air-l/ase

surface debris l)h)wn in by olher jels or inKested

by vorlices i)rovides a major part of the 1)rob -

lem, but failed inlet components and obje(qs left
in inlels by personnel also contribute. Centri-

fug'al engines are less vulnernl)le than axial lypes,

'although 1)oth have high (l'nna_m tales, llmreas-

in,d engine-inlel height reduces the f()reign-ol>je(.t

(|;una,ree r;lle; however,, increased height is not a

l)ana(:ea. SiTniticant vari'ttions in fol'eign-ol)jeel

damage exist in engines operated at different

bases; lhus, lhe operating environment and lech-

ni(lues are also imporlant factors in determinin_

dnm:l_e rates. Screens have 1)een ineffective in

i)reventin_ damage necessitating maintenance;

however, the record indicates that screens have

improved flying safely somewhat.

Sieps to reduce foreign-object damage should

include personnel Iraining, better debris cleanup,

iml)roved screens and air inlets, and engines of

into'eased resislance to foreign-object iml)act.

Ilesearch on the criteria of screen desi_rn, screen

inst'dl:tlion, and rug'ge<l engine e<mslruction is

su_geste(l. 17ntil the danger of foreign-ol)je<'t

damage is completely eliminated, it: is essential

lhat a scheduled inspection be set up for damage

I() the COml)ressor and lurbine blades.
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CHAPTER IV

COMPRESSOR BLADES

l_y ANI)IHT." J..'_IEYEI_. Jr., and S. S. ),IANSON

SUMMARY

3[:lit(_r_j failure _'/,[L,'tics i_dleate that fore@l-
os)eel damaf/e. _'ibvation fat@u< am/ stress-

,;.fro.,.:o_ cr_wlci_y are among the _ore importa, nt

./a;lu,'e cau._'e, ]>l,.';l_ff compressor blades kiffh on

the li+.t o.f ent/h_e <'ompo_eld,s responsible for en-
ffi_e overhaul a_id fiiyht aceide_t.s. These sta.tis-

t;e.v ar_ rer:eu'ed, &w/cffrou_d ilLformation o,n the

.f, ilurc mcehaJiLw_,,v is de,_,eribcd, at_d po,_.slble

r, medial mea._'ur.s.re di._eu._._ed. Des@_, opera-

t;,,J_, a_d :l_._'l>eetlo_ l>?ae/h'e,_ that would have a

L:.efi.h,1 effe.: o_ ._'.r_'::(_ rcl&billly, as well as

.f,h_re r.._e.r:'h :h,# would prov/de a firmer basis

.f.? a.h:,.cem_'./ %f r.l:_Sili/9, are at._'o dL_'eus.w'd.

INTRODUCTION

()he ()t' the lnost vuhwrable (:()ml)()nents in a

ga>-turbine m_il is the axial-ih)w compressor.

Forei,q_,.. ()l_ie(.ls. enlet'in,,'.., the envine inlet cause

tlm lal'#'est 1)()rli.n ()f COml)ressor damage, and

vilwati(m failures of tlw rot.v hladin/ also ac-

_[)ll]lt f()l' ]H;LIlV c()l|l[)l'eS_()l' losses.

In ea|'lv enR'im'susin,,/('('ntrit'u,,dal cmnpvessors,

i]le ft, w 1)r()l)h,n_s em',)un_ered were q||ickly solved,

nml the emil vi fu/al c_)mlwessor _ain('d a relmla-

ti(m ,,f ,()|_si(le|'alfle el|du|';|||ce and relial)iIi W

(ref. 1). The lar,/e diameters ass(,[4ated with

,:'enlrifuval ,onq)r(,ss_ws and their limited l)res-

sure va_i() eliminaled llwiv al)pli,'ati(m in later

mills. They were rel)ln,'ed alm()st ex('lusively by

the more efti('iem and higher 1)ressure ratio axial-

[][)Vf ('()1 I1 ])l'ess()l'.

Even if c('nlvifu_z;d ['()lll])l'eSsol'S IlI',P used ill

early .(mmwvcial tvansl)()vts because ()f added

reliability, there will uhhnatelv he a trend to-

ward use of axial compressors 1)ecause of their

inherent perfol'||mnce .tdvantaoes. This chaI)ter ,
whM_ is c(meerned mainly with axial-tlow units.

points _)ut smm'es of ('oml)]'ess()F failure and su_-

/ests methods of ilnl)roving COml)ressor relia-
bililv. Failure statistics will also be discussed.

FAILURE STATISTICS

_tu(ly of failure st'Ttisties of military units
over the first 6 months of 195t reveals that o6 to

59 percent (depending on engine model and ap-

l)lication) of 1)rematm'e engine overhauls were

due lo foreign-objecl damage in the coml)ressor

((.h. lI). The ingestion of foreign objects may

cause a direct iml)act failure lint nlore frequently

will produce nicks, gouges, and dents in both
rotor and staler blades. The inlmedi,),le effect in

some cases is iml)aired etticiency, but the more

serious effects are i)oims of stress concentration,

which m'ty with time result in f'ttigue failure.

St.ttistics on coml)ressor failures other than

foreign-object damage are relatively ineffective in
determining the true severity of the coml)ressor

reliabilil y problem. For examl)le , available st arts-
tics show that 6.5 percent o:f one engine tyl)e

wm'e l'emoved prematurely fl'onl aircraft pri-

marily because of COIlll)l'('SS()F ditticulties. In an-

other engine lyl)e, S.S pev(.ent of the engine
removals were attributed to the COml)ressor. Ilow-

ever. neither the Engine Removal Reports (ER's)

nor the ])isasseml)ly Insl)ection ]lepovts ( I)I ll's)
used for statistical faih|re data include any of

the fatigue failures where l)lades actually sepa-
rated from their attachments. Since a 1)ruken

(,Oml)ressor blade is generally c;u'ried through

su(.ceedin7 colnl)|'essor stages and starts "t chain

reaction of blade failm'es, a single blade lath|re

mqy virhlallv deslroy the entire engine, and fre-

quently the aircr:tft. Consequently, these results

are not listed in the I)IR's, since lhe engine is

n()l repairable and must 1)e scral)I)ed. _k com-

1)ressor failure in which a single Made failed in

the tlt'st siao'e is sh()wn ill |i_'ure 1. The damage
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l,'l<:l ill,: 1.- Tyl)icM axi:tl-flow-umulw,.,->,_w failure, r(--ultin,.z,

from fatigue' [_f (mr' lit'-,t-stztg_ blad(,.

accumuhttt,_l mltil it tmr,.l lhrou_zh llw otto<in,j,.:at

lilt' sevenlh _l:l_'e. 'l'lw dtlma-_t, rt,>qlltiu_ t'rum a

t'ali_'ttu failm't _ in a Idade r_()l i_ slloxxn ill liW

uvt' '2. Nix uther ldmh,s ill the _ante sl:l_t' had

t, xltq_sivt+ ['ali_'ue Cl';tcks ill lht' I'()IHS ttlll[ fractured

Ul)_m imlmCt. 'l'lw l't'Itlaill+ <)f a lll()l'(' _[isaslrous

('()llllIl't':',:+,I)l' ['ailul't' art + :--:hOWll ill [i_lll'O :+. ]>ttl't

of lilt' t'lllll]ll't'>.,SlH' \Vtqll thl'<m-,.,'h lilt + roof of tilt +

]:l,:Vttt+: 2. + l):mm,ze r_,sullilt_Z front fztti_u(, [+f bl:td_, r(iot

ill _('(*()II(] I'Ott)l' S[ll_4'+

lmihling in which ilte unit was tested. The row

<if bhuh,+_ visible in tht, lfiCtm't, is that of tile last

rottl,' sta_e. I ht blade.'_ <)i! the see<roll-last I'<)IOF

disk were stril)ln,d off. 'l'hest, faillll't+s o('_mrred
in If'st ++..;lands tit thti NA('A lal+oratut'ies.

A limited :llllOltll| t)f I'<HI|]II'I'SF,(W statistics t'ltlt

be <,l)iained th'tml ae<gthmt rep.vts. In many

<'ttst,_, howt_vtq', lhe dama_t _ is s_l extensive that

the Ol'ig'ilttl| ('ttltSe CttlHlOt. [)e tl'ace<l and thus is
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COmln'e_or IWeS,',ure ratio are e_l)ecially subjecl

to dm'nlfility l,r. dems. Many en_'ines not cov-

eretl in the s_mlv lmve l_een gromMed at various

tintes :Is a l'e>(i]l _lf t, xci, ssi\'e fatigue failut'e ill

t h,_ CoIIII)I'P._.'-;t)I'.

]_PCtilIS( _ in0 hifth p('l'Ct'llla_t! of OllO'illOS dalll-

:lfed ]w l'()rci_lt ,)l)it'.'t_ was nlnllil'esled mainly in

the compressor, :tlul I)ecau.,-e t'aliglte failures in

conlpro,_s.r._ wer(, ,_. disast ,'.us, il is alqmrent thal

the weal-:e_l si.ffh, item in tl_," .i(,t (,]tftinc i_ the

rotor 1)hulin.2. of _]te :txial-fl.w cOnlln'essot'. The

cenlrit'uffal Cmultres,'_or is far more relialde than

ihe axixd-tlmv mitt. (If the 55 failed cmnpre_m'_

lnentione(I in lhe 19,",:_ m','ideut re¢:.rd,'% otdv one

was :lcenlt'ifu,ml..onipress_)r.] Iks and ER's

show that c0mril'u_al cOtnlm,ssors have almost

as many failures as axial-flow trait% lint|here

faihwe_ 'n'e only 1he r,,lmirallh, lype.

DISCUSSION OF FAILURE MECHANISMS

Vel'y few COIll])I'OSSOI" failures ]lave oCCUlTed its

a l'eSll]t of direct stress itnp,)sed hy centrifuffal or

sleadv aerodynamic ]oadin_z. The centrifuftal

stress v'u'ie_ \vith the sl:l.fte (tlft. 41. Ev,m lit,'

hifthesl cenlrit!tt_zal stress of 3(;,00I) pomMs per

square inch (psi) in tit(, tirst stafte at the rated
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_peed of lhe 0uffine is only a fraclion of the

strength availalde front lhe c()nt|)ress, lr 1,lade

mal(,rial. The Itendin_ stresses due lolhe slea.dx-

state ,.Zas for('es at rated _pi,ed ave only 15 to 25

percent o1: lilt" (.enlviftu...ral slresses. ()11\'i<lttsly,

other faclor._ are 1)rimarily l'eSl)(;nsilllc f(ir ll_e
l'ailure_.

PRINCIPAL TYPES OF FAILURES

The Itrim'il):d ,'aust'_ ,_t! Ct)llll)l'eSS()l" t'ailttrex, in

m'der ,if frequency (if occurrence, are : ( 1 ) foreign-

,,bj(,,,l damage, (:2) vibrati,m fatigue, (3) stress-

cm't'()si(m ('racking, and (14) blade-surface erosion.

F0reign-0bject damag'e.--The, axial-fl(tw-c,tmpres-

s[,t' r()lov ldmh.s are lhe tirsl moving objecls en-

,',nlnt,'l'ed Ii 3" foreig'n luatler elllel'ill_Z a jet en_illO.

Because every other row of bhtdes in a COml)res-

sot is sl'_li(in'_ry and immediately ol)strucIs 111"13'

ntoli,)n ilnl)arh,(l to f,n'eign l)arlic]es 1)v lhe. in-

ter\eninft l'()l()I" I)htdes, thmmfe is caused to it

larffe ltercentag'e of lhe total mmd)er of blades

in a nmltistafte c(nnl)ressor. Also, the cantilever-

type alla(dnnent and 111,' thin h, adinft 'rod t railing

t,(lffes of lhe airfoils make the axial-tlow nnil._

exlremely sus(_el)lible lit fl)reign-object (lamafte

( li,_. :,).
With lit,' convenlion:d blade maWrials used,

the _lire('t imlta(q of a foreign ,)llje(q sehl(ttu

causes the blade to 1)reak, mdess the object is

unusmdly large. The datnage c(insists mostly of

small ftOllT('S all(| IliCliS ill lilt.' airfoil ('lift. d).
These ni,'ks in themselves are n,,t disaslr.us. I,tt

lhey nmltiply l]w \-iln'nt()r 3" _.ll'esses m)rm:t]lv

l)resent and II1_1_ indtwe or ffreal]y avceh, rate

],'mr:tiE 4.---little (,f centrifugal stresses ill rotor })htdc> |"i(;t ill.: 5. I):mmuo r(.--uhin,.z from for,,i,_n ot)j,.cl eului'ir,,2

of variotlS st'foes, il_h'l.
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t,'mu,tt.: 7.- llan_e of number of rotor blades in each sta_,e

of eonventionM jet-engine eoml)ressor.

Ibc: use lhe mm_l)(u" of blades per stage increases
lmv: rd the rear of the coml)ressor , the tirst stage

had die highest pel'celltage of (tam'lge. The peaks

in the curves indicate that 1he foreign object

ling,q'ed slightly in die ienlh stage. The values

do not include stator blades, which are not nearly

as. 'itie'd bec'mse of the al)sen(!e (,f centrifugal
h)ad _.

Vibration fatigue.--Fatigue usually occurs in the
rata 'blades, but is occasionalh" experienced in the
slat( r blades or rotor disks 'It the blade recesses

})etalse of vibratory loads from the blades. The

ld't(l_ vibrations are generally induced by 1)ulsa -
tiara, in the :tirflow. ht most cases of blade

faih re, the fractures occur in the airfoil section

near the t)ase and show progressive d'tmage typi-

cal ,,f I)ure faiigue (fig. 9(b)). The origin of

I)0_ [ [ o Num_cler Of I_lad%smdomage_d - -i_

-_ o Percent of total per stage -- _]

_6

I 2 3 4 5 6 7 8 9 I0 II 12

Compressor stage

t,'[r:_ nl_ 8.- Numb(,r of bl:id.s damatz(,d by forM_n obj,,_'t

in typical axiM-flow eOml)ressor.
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Inch

(c) (5) ic)

(a) Vir lr(,(,. (t)) liiv[,le_!. ,(') l:ir (tee.

l:t(_li{l.; 10.- Types

the failure is usually on l}m (.yottvex surface at the

nmxhnum eam|)er 1)oint_ (point O), where the

1)endin,: stress is maxinmm during vibration.

l:afi_ue failures may "tlso orig'inale in the trMling

edge of the airfoil (point P). In olher (:_lses_

(he fnilure is in (he faslening (1]K. 9(e)). Fre-

(llLenily fatigue failures ori,(.zin:tte 'it randoln loc'/-

lions (m lhe airfoil where stresses are no{ ordi-

narily hi,.z'h but are maffnitied 1)3" slress coneen-

ll':llions ;ll'iSill_ fl'Olll loolmnrks or nicks lllltde 1)y

foreig31 ol).ie('ls (li_. !)(d)). Nix (yl)eS of f:/sfell-

in_s t]lal ]).ave t)een used for eompress(ws are

shown in tivure 10. ]n (he fir-lree types (fiVs.

1()(a) aml (e)). hi/h sl )'ess emwehl Fat ions oe(:llr

in the fillet 1)etween serl'alions, lmtieularly i¢

the radii are small. The hemling slresses due l()

vii)rat h)n :Ire superimposed on the steady centrif-

ugal nn,l _as-bendin_ stresses. All stresses nre
ma_niIh,d hy fhe stress eoneentralion caused by

the :ll)t'lll)l ,'h;ltl(re"v,.._ in er.ss section

<d (e (f)

(d) ]_:llI r_),)l. _v) [)_)vet'.dl. (f) I:u)se pin.

of bktde roo l':tslunin;zs.

Viblalory slresses of ±:](),()()() to _40,000 psi

have (Olll]llonly IJeell llle;Islll'e(l in COllVel]tiollal

jel enzim's (refs. 3 and 4), while vihraiory

sll.'esse:_ as high as +s(l,()()0 psi have been ol)served

in exl),rimenlal units, l:ivure l i is a moditied

f:tli_u( dinvr:un, n idol ()fvil)l'al_ryslress a_:/inst

lllllHl)e' of c>('les 1o t)r.(hu'e failure fro' a lylfi(.al

I)lade nalerial. The ]mriz(mla] p(wlion of (he

mwve ,slablishes lhe enduram'e limit, (he vil)ra-

lory s( ['ess (hqt can be endured indefinilelv with-

(m( eal sin_ failure. This endura]n'e limi( is lower

t]mn lint norlnallv l)resenle(l for this malerial.
l)llt lh_ ellFVe ]l).Is ])eell modilied t() inelu(h, lhe

ell'e('( )f fhe slea(ly slresses hnl)()se, l on a r,)tor

l)lade '.d (he sl)eed at whi('h l)la(le vil)ralions are

m()st i revalen(. The high vil)ral()r.v slress('s gen-

eral]v (>('('ur a( 50 (<) T() l)er('en( ()f ra(e(l speed.

The I me required 1() l)roduee failure van be
r('a(lih de(ermined fr()m (he l)la(le nalura] fre-
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Fi(;VRE I l.--Modiiied f'ttigue (]iagr;i, nt for typical CO]ll-

pre._sor-I)lade niateriM.

<luency and ils vibratory stress. The causes of

faligue are discussed in more del'til in the sec-
tion NATUI{E IiF ]:'ATI(;1.zE I'I{()IHA';3I,

Stress-c0n'osion cracking.--A difficulty called

stress-corrosion crackinff h'ts recently been en-

eounlered with lhe 12-1>ercenl-chrontium iron

alloy currently l)einA" used for ne'u'ly nil com-

pressor blades (refs. 5 to 7). Allhon_h the actual

nie<.hanisni for this l)r()cess Dis not been con>

l>let ely esl'lblishe(1, i lit, cracks ('tilz. 1-°) q.,reknown

to 'q)l>ear under the f()lh,win 7 circumsi:mees.

Stress corrosion crocks

(o)

(b)

(a) ],ocalion of cracks.

(b) PhoioniicrograI)h of crack.

Ftcciu.: 12.---Typical bla<le cracked l)y stress corrosion.
534962 60--5

As "t result of the strengthening he'll i reatment

and quenching at 1750 ° F, residnal stresses due

to fal)ricalion lec]mhlue :ire frozen into the ma-

lerhtl according to lhe llteory outlined in refer-
ences 5 an(l 6. The residual stresses tend to assist

nloislure iii tim air and l>artieu]ar]y in salty

atnmspl_eres in peneiratinff and reacting with the
,.,'rain boundary material (lift. 12(}))). Anolher

lheory suggests tlml llte problenl is simply one

of }lydro,_/,n eniln'illhunent tlll(] is independent, of

residual or ol)eraiin v stresses {]'ef. 7). In either

case, because of exlrellle tlflnness, the lrailing
edg'es of llie blades are most vulnerable 1o <'racl<-

inff.

l)urinK fal)rication_ lhese blades are given sev-

eral heat lreatmenls. The first_ which occurs

afler the bl'lde has been formed, is intended to

produce an ol)limmn microslructure and relieve

residual stresses due to forging. The blade is

then tlnished and ilie edges polished. A set.end

heal: /re'ttment is applied to relieve residual

si resses inl reduced durinff the tinishing operal ion.

The properties of tlie blade, 'rod in particlflar ils

resistance to stress corrosion, del)end on the tem-

peratm'es used in lhese ]wag treatments. The

i>raelice of one manufacturer in 'q)plying tim
th.st, heat treatment is to sohition-treal; the blade

at 1750 ° F and blast-air-cool it. The tempering
lreallllellt following the quenching is at 1000 ° F

f, ir al)proxinrltely 2 ],mrs. This resulls in high
l{ockwell hitrdness values of C-32 to -:IS, whieh

ffive lliTlt tensile nnd endurance strenTth (tl K.

1:}): bill SllC]l blades ]lave had stress-c()rrosion

in'ol_huns. Anoilier nntnufaclurer Ills() uses It

s(ihlll()ll-lreallllelit leilll)eratlll'e Of 175t) ° F, i)llt

tempers qt a big'her lemperalure of 11t0 ° F for
'2 hours dul'in#z lhe first heat treatment with a re-

sull:nit softeninff to a l{oekwell h'u'dness level of
C 20 to -26. The tlnal heat. treatnient in both

eases is a stress-relief anileal {lid 950 ° F during

wliich [lie hardliess iS not chiuiged. Alth,.lffh tim

sofliless ()f t)lades inade 1)y the second nlei]lod l'e-

suits in h)wer lensile strength and endurance

]hnit (ti_. 13), iniproved resistance 1o stress-

corrosion cracking, :is well as other tail)roved

l)ropcrties such Its higher internal-daniping

capacity and higher inipaet resistance (ref. 6)>

accompany the h)wer ]mrdness. In a study by

lhis manufacturer of 109 (:ompressor faihtres dire

to stress corrosion, only one compressor contained
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FIGURE 13.--Effect of tempering temperature on len_ilc

strength and endur,tnce limit of 40:_ stainless steel.

soft blades, while 101 contained only hard blades.

The other seven compressors had both hard and
soft blades.

The stress-corrosion cracks themselves are not

very serious, but in the presence of vibration,

the crack is propagated until ultimately the blade

fails from fatigue.

Blade-surface erosion.--Erosion may be due to

dust, sand, water, or similar particles. British

conversion from aluminum to steel blading was
due to the common occurrence of erosion of alumi-

num blades. Erosion effects are gradual and

readily detectable during inspection, so that any
blades in an aircraft suffering from erosion would

probably be withdrawn from service before dis-

integration occurred.

NATURE OF FATIGUE PROBLEM

Fatigue rsults from alternating stresses 1)ro-

duced by blade vibrations. Listed in order of

importance, factors that may induce these vibra-
tions are: (1) rot'tting stall, (2) aeroelastic

coupling, (3) obstructions, and (4) transmission

through mountings.
Rotating stall.--Rotating stall occurs at speeds

considerably below rated speed because of aero-

dynamic COlnl)licatiolls arising from operating the

eoml)ressor at speeds other than design speed.

The axial-flow compressor is designed to operate

under a given set of condilions, and tim design

point is usually the rated speed of tim engine.

Thus, all the angles of the various blades are set

in their proper relative orientation for this op-

erati}_g conditi(m. When the engine operates at

any ,:ondition other tlmn its design point, the

blades in each stage are improperly arranged

relative to the blades of adjacent stages.

The effect of part-speed operation of a multi-

stage engine is shown in figure 14. For proper

pass, ge of the air during this part-speed condition.

the hub contour for optinmm stage matching is

that shown by the dotted line, whereas the machine,

whici_ was designed for full-speed operation,

actually has the solid-line contour. The passage

in the rear part of the compressor is not large

enough to handle the air induced by the com-

pressor. Thus, the rear stages tend to choke and

restrict the airflow through the compressor. Be-

caus_ of the reduced axial velocity of the air, the

fron, stages operate at a higher angle of attack,

ther.,by being brought close to the stall conditions.

Figure 15 shows in detail what happens in

one .)f the stages when it approaches stall. The

angl_ a is the angle between the chord of the

airf(.il and the air velocity. As the angle is in-

creased the lift increases, but beyond a certain

criti,,tl angle the airflow separates from the air-

foil md tlm lift decreases. This is blade stalling.

I R115IF tIF LJ u.nL Ill -:

"" _u -rn- stogi-motch,ng -

_ i.... .... °'design speed). :'

\ - " Hub contour .(for optimum

_ stage motchrng at port '

\ _"'_1 _-._ speed )

! i II _ j'nb'!q [ -," rl il -.

Fronl Des,gn stage
,stages match poinl

,_.'-'' "_'_/'S_oae "_',- Rear stages

/r i characteristic X

5 ["SiOII I I Choke
L_...... x..._ , I

Flow coef ficienl

1"I(;_ i_t.: 14.- -Desired conq)r(,ssor l)rofih' for full-sl)eml aH(l

lmrt-speed Ol)Crati(Hl and effect on ,'ftici['n('y.



FACTORS THAT AFFECT OPERATIONAL RELIABILITY OF TURBOJET ENGINES 65

f
f

j ,7-

/_k,/f

" a "/ Reiative a_rflow

Smooth airflow associated with operation below

the stall point is shown ill figure 15(a). Each of

the many blades of a stage approaches closer to

stall, but there is always one blade (e.g, B) which
will tend to stall before the others because of

manufacturing differences. V_'hen this blade be-

comes stalled the adjacent passage can no longer

pass its nornml quantity of air, and the air nor-

really using the passage BC must be diverted to

adjacent passages, as shown by the dotted lines

(fig. 15(b)). The additional air forced into pas-

sage CI) approaches blade C at a higher than

normal angle of attack and stalls it. Tim air

diverted into l)assage A]:_ strikes blade B at a

lower angle of ,ut,tc]( and nnstalls it. Tlms, the

st,dl re,/i(m has moved from BC to CI) (fig.

15(c)). Similarly, the stall of blade C diverts

:dr to the next passage and blade D stalls and so

forth. In this way, the low-flow-velocity region

is caused to move successively from one passage

to the next. This is called rotating stall.

Angle of attack, a

\

---Sioll

direction _/

J
/

,

_i Unst'dled rotor row. (b) Blmle B stalled. (c) Blade C st.dled.

]:_;VJ_E 15. Sketches illustrating progression of rotating stall.

By means of hot-wire anemometers, rotating-

stall patterns have been measured and examples

are shown in figure 16. As many as eight equ,_lly

spaced low-velocity zones have been detected
simultaneously in a compressor annulus (ref. 8),

(a) (b) (c)

COO
(d) (e) (f)

l"l(; urn 16.--Some rotating-stall l)'ttterns detected by hol-

wire tillelnoll]eters.
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but generally, the nunlber of stalled zones is from

three to six (refs. 4, 9_ and 10). The zones ill a

given pattern may be of different intensity and

smnctimes are unequally spaced.

Tyl)ical signals from hot-wire anemometers

(ref. 11) used to detect low-velocity zones are

shown in tigure 17. Because the signal is not of

a simlsoidal-wave form, it contains many har-

monics which can induce blade vibrations. Many

1)otential critical speeds are possible in any axial-

tlow compressor because of the multitude of n'd u-

ral frequencies of the different stage blades in an

axial-flow compressor, the many stall patterns
which have been ohserved, and the harmmfics of

each p:tttcrn.
Figure 18 shows a hyt)othetical critical-speed

diagram. The intersection of any of the natural

frequency lines with the exciting frequency lines
for both the various stall patterns and their har-

monies constitutes a possible condition of blade

vibration. The magnitude of the vibratory stress

depends on intensity of the harmonic causing the
vibration, the total damping in the system, and

the proximity of the exciting frequency to the

blade natural freqnency.

Ilotating-stall patterns have induced very severe

blade vibrations. The catastrophic compressor

(a)

(b)

(a) Signal for three stall zones.

(b) Signal for one stall zone.

FicunE 17.- Tyl)ical hot-wire-,'_nemom(qer sigmd for

rotating stall.

7xl,) 2

Exci'ting frequencies relolive

1o rolor blades

-- Fundamental
----Second harmonic
-----Third harmonic
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FIG[ RE 18. IIypothetical critical-speed diagram for

axial-ttow cornpressor.

failur_ shown in figure o was caused by rotating

stall. Fortunately, rolll| ilLg slall of a StFOlIg peri-

()die lmture ()COllrS olLl 3" belween 45 and 70 percent

of rat 'd speed. TILe jet eug'im" is seldom subjected
to lhk' speed range for long l)eriods ()t' ol)eralion ,

as the range is traversed only Ul)mL acceleration
and _leeelcration. Neverlheless, r.t'tling stall

tonsil utes |he prim'try source of fati_z'ue failure.
Th( nmnber of stalled zones coast ituting "t stall

1)atlm n depends on many faclm's. A hyl)othcdcal

complessor l)erf(wmance map with tl_e speed

range:; through which specific numbers of stalled

zones occur simull:meously is skel('lu, d in ti_ure

19. I,ine AA is -_ t3'l)ical sle:ldy-sl'de operating

line. This line shifts upward if ILL(, jet-nozzle
are't i_ decreased and downward when the area is

increased, thus varying lhe speed range over

which a particular roialin_z-stall pattern is pres-

ent. Line BB is a lypical lmth followed when

lhe m gine is 'lcceleraled. This line is also vari-
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l[yl)othetical performance ma I) for compressor showit_g re_ions of slatL

able, depending on the rate of acceleration. De-

celeration will produce still .mother family of

curves below the sleady-state line AA. The

speeds marked on the graph are corrected to

standard atmospheric conditions. Inlet tempera-
tures lower than shmdard would shift all the

corrected-speed lines on the map to the right;

higher inlet temperatures would shift them to the

left. Thus, on one d'ty a severe vibration may be

observed in an engine; the next day the same vibra-

ti(m ('_r_nof be rel_r,.hu'ed in tim same (mg'ine be-

cause of a change in amlfient leml)eralure. ()he

mlgim, ()f a ce]'iain m(xlel may vii)rate l_eeause of

rotatin/ stall, while am,ther of the same model

may never' vihrate because it has ;v sligh! (lifter-

m)l laih'ohe o_" n(_zz}e-(]ial_]_r;L,.,-m area. ()m' en-

_'im_ may vii)rate I)e('ause ()f resonance belween

lhe s(all nn(| 1)la(le frequvm,y at a ('erlain Sl)eed.

]n an()iher eng'im', ]'olalin V slall may ('ease, o," a

dill'erenl stall ]mile]'n, and (,()nsequently a, dilt'er-
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ent stall frequency, may (}ecur at this speed. Thus

resonance is not produced, even though the ])lade

frequencies may be the same. Therefore, many

factors are involved in lhe development of a
vil)rai ion condition.

The ._tall-I)attel'n re_i()ns are never "is sharply

defined as in ligm'e li), ln,('ause there is eonsid-

erabh, merlnp 1)etween these re_ions. ])urin/

,,peralion ai any _iven speed ]mar the bounda-

ries, the stall patiern may change instantaneously

from mm conti_ur.ltion to anolher and back again

and, under certain comlili(ms, even to ,_ third or

fourth contiguration. Figure °0 is a continuous

allelllOllleteF l'eOol'd at a ('ol/siallt en_il/e speed.

Initially. a sin_le-slall z_)ne was present. Next,

a fern-stall l/attern took pla(:e with two weak

and i've strong zones, follmved by a live-zone

])atlelui wilh only one sit'on/ zone. Finally,

lhree zones of equal ve]ocilv v:u'iaiion were es-

tal>lished in the :mnulus. The ]ig'l_t vm'li('al lines

I'epl'es-,llt l illle ill('l'elllellts of {).()l se('oll(|_ show-

in.<_, ],m rapidly lh(,s(' dmn/es ('an take phwe.

k.er0elastie e0upling.--The illiel'acl iOll of aerodv-
munic f(n'('es :hid lhe elasii,: ln,lmvior of lhe

l,la(lin_ can resuh in :m ]nstabiliiv which pvo-
du('.es blade vibrations. Fhnler is an inslat)ililv

(umui,mly ()c(turring' in airl_lan(, win ,is (ref. 1:2)
and ]l:tS 1)een observed in siaiionarv r;Isea(|es of

untal)t,red, mliwisted airfoils simlflatin,_ ('omp-

l)ressor l_hules (ref. 13). In c, mq,ressors, the

90 °

%

, ' I / , I 1 r r l 7_ [ L ) l 1

FIIIIIIE 20.- Tracing of osei][ogl.aim of eOllt_irluotls "ililHlllIIlitHl)r sigiia ;ll constant ,,ll_ill_, >lie( • '. f])lllmitli_lli.-, _)[ _. :il'[oll._

stall l)at/erlls a, t)_ c_ f], O indieat,_ 1 I)y :irril,,'_s.,
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problem may be aggTavated by high aerody-

namic loadino', 1)roxinfity to stall, pressure rise

across the stage, and certain cascade effects (refs.

14 and 15). Such excitation occurring in the

vicimty of still] is known as stall flutter, which

is entirely different from rotatin K stall. Rotating

:tall is a periodic nommiformity in the airflow
'Amt .nlv exciWs blade vibrations when the im-

pulse frequency al)l>roaches tim blade lmtm'al

frequem'y. Stall thHler is self-induced vibra-
tions (_t" the blade in a mdforln flow lield due to

aer,)dvnanfic instabilities arisin_ from high an-

,_les of attack. Althou_zl, consi(ler'd>le research
has been dire,'ted toward stall fttllter ill coln-

l)ress(_rs, no clear-cut experimental evidence of

its o(',m'i'en('e in ,)l)erath_ milts has been ob-

served. The llriiish, however, are strong advo-
cates of the exisle_)ce _>f stall tbmer in com-

t>ross()rs trised c)n their llllll/V stati()narv cascade
testS.

0bstructions.--Vibration excilations occasion-

ally are lwo(luced l>y bearing supports, station-

arv blades, l)leed ports, and measuring probes
(ref. 15). Wakes shed frOlll these <>bstacles
strike Ihe rotor blades as thev revolve and con-

stitule a periodic excitin_ force. Strain-gage

i11vesti_ati()lIsusually detect seine vibrations due

to the obstructions, 1)ut the 'mq)litudes are sel-

dom large enouzh to cause difficulty.

Transmission through m0untings.--Transmission

of periodic forces throu_zh the blade mom_tin_

from accessory-drive and propeller-reduction

_earin_, puls.ltions from the various pumps, and

cyclin_ from the combustion i)rocess are all pos-

sible causes of fatigue. However, these forms of
excitation never have 1)een encountered to a seri-

ou_ de_ree and arc included <>nly for complete-

hess. Unless jet engines become drastically dif-

fei'ent fr<>m present mills, the problem is not

exl)e<qed to 1)e of serious concern.

FACTORS AFFECTING STRESS AMPLITUDE

The slress amplitude develol>ed depends <m tlle

m:w'nitu(le of the excilin_ force, on the relation

()f the exciting frequency to the n'mu'al frequency

of tile system, 'rod on tile damping tending to

suppress the vibration. The first_ factor is self-

evident: the greater the exciting force, the higher

tile vibratory stress anlplilude. "When harmonics

are involved, the magnitude of the exciting force

is dependent on the lnagnitude of the harmonic

energy content present in the initial impulse.

For example, an engine may have both a single-

and five-stall pattern at: nearly the same speed.

(_enerally, the greater the number of stalls in
the ammlus, the weaker the wake impulses. How-

erer, in most cases, the higher the harmonic, the

lower the energy c(>ntent of that lmrmonie in

the original impulse. The harmonic content gen-

erally decreases more rapidly for the higher har-

monies than does tile energy in the stalled zones,
Its the number of stall zones in the ammlus in-

creases. In other words, the vibration amplitude

caused l)y the hmdamental of the fire simultan-

eous stall zones will be much higher than the

vii)ration 'unplitude from t:he fifth harmonic

(having approximately the same exciting fre-

quency) of a strong single-zone pattern.

The second factor affecting stress amplitude is

best illustrated by figure 21. One of the abscissa

scales of this figure is the exciting frequency;

the other is engine speed. The stress amplitude

is maximum when the exciting frequency is equal

to the mttural frequency of the blade. The illus-

trated resonance curve is typical in shape for a

conventional compressor blade. Operation at only

100 ri)ln off' the resonance point will cut the

vibration amplitude to half the l_sonant value.

b ;

> 12

4l
255 240 245 250 255 260 265 270

Exciting frequency,cps
47'00 4-800 4§00 5()00- 5100 5200 5300 5400

Rotor speed,rpm

]"ICURE 21.--Tyl)ical resonance curve.
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In some cases of rotating shall, true resomtnce

may not occnr because the slall condition may

vanish before the stall frequency equals the blade

hal ural frequency.

The third factor affecting stress amplitude is

damping, which actually ('ontrols the peak _'alue
of lhe res(mance curve (fig. Ol). The damping

of a vibratory blade can be separated into three

parts: (1) material damping (sometimes called

hysteresis or inIernal damping), (2) root or

mounting damping, and (3) aero(lyn'unie daml)-

ing. Materi'd damping is the internal friction

developed in the 1)lade material when it. is
stressed. Each material has its si)e(dtic value

(logarithmic damping decrement, table I) and

there appears to be no cilnsislent correlation with

other connn(m mechani<'al or l)hysi<'al properties

of the material. ]tamping is affected by slress,

heat treatment, telnl)erature , an(l :frequency of

vibration (refs. 16 to 19).

Root damping is the result of external friction

arising from the rul)bing between the mating

roi()r alld l)lade r()ot Slll'faces oF surfaces espe-

cially l)rovided for lhis purpose and is depend-

ent (m rool geometry and centrifugal load of the

blade (ti K. 22). The root damping can Ire in-

creased and extended over 't considerably higher

centrifugal load or speed range by providing lu-

brioati()n of the root (ref. :20).

Whenever a blade vibrates in a moving air-

stream, part of the vil)r:lti(m energy of the blade

is imparted to the airstremn. The 'unount of

energy dissil)ated in this way is a function of

-_ _ 81 , --- duplicote test with

O_ 4 xlO 56 8 I0 12 14

Rotor ,speed, rpm

FIt;VIlE 22.--l):lmpin_ [)f various hla(h, roof d(,_.igns "_s

aft'cctod I)y rohni()nal sp(,(,d.

air velocity, air density, density of the blade ma-

terial, and blade _e()meiry. Aerodyn'm_ie damp-

ing e:m l)e computed by the procedure used in

reference 15 or :21. The blade amplitude then

depen:ls ()n the amount of vibration energy ab-

sorbe(! by the :tit', the bla(le material, and fric-

tion i l tile molmting inste,l(l of being spent ill

slmkil g the ])lade.

MITIGATION OF THE FAILURE PROBLEM

IMPROVED COMPRESSOR DESIGN

The failm'e problem can 1)e greatly minimized

if Ill('. designer aniicil)aies vibr'ltions when pro-

l)orti(ming the blade and its attachment. Fx-

l)erience has shown only first-bending-mode vi-

bratio Is to be (if major (!oncern.

])esigrt of the blade and attachment.--The designer

should llrovide generous fillets at. the base of the

airfoil, kee l) lhe stress coneenh'ations in lhe root

as low as possible, and av_)id overhanging any

paris of the airfoil from the base. The blade
roots dmuld be designed to allow easv inspec-

tion (if the critical points and easy repla_ement

in _as'. of foreign-ob.ie('t damage before fatigue

l)i'(/dn,a,s ultim,(le faihn'e. In the design stage,

specia roots and devices can be incorporated to

in('rea_e the lotal damping in the system. By

introd,l_qng external-friction dami)ing , the stress

aml)liiude may be diminished even if the ex-

idling f(n'ce 1)ersisls. Blades loosely titled in

their 1,reruns have benefivial effects in minimizing

the an l)litu(le built up in a vibl'ating blade (ref.

21). ki the l/art-speed ('onditi(m (where rotat-

in_ st dl ()c(.urs) there is some benefit derived,

hut at rated speed the high centrifugal forces
in('rea:;e the fri(,tion mltil n(i root motion takes

place n lhe root and no vibralion ener:zy is dis-

sillatet[ by this means. Introducin_ a lubri(!ant

snell a_ a dry tihn of molvbdemm_ disulfide MoS2

redu('e_ the fri('ti(m to the I)(,in| where root too-

lion a;_ain takes place even tamer the hi_rh cen-

irifug: l load. Figm'e 2:] shows the ell'e_:t, of

MoS2 m root damping of '1 loose blade for vari-

(ms ce _lri fuTal h)ads on a ball-iype root mount.

One Brilish engine utilizes a very loose pinned

type ot! blade atla(.hment like the one shown at

the upper right-hand side of figure :2:2 or in fig-

ure 10(ft. This parti(.ular lype of 1)la(le takes

advania_ze of the fact that serious vibralions in

lhe i]r_t ])endin_ mode (if a tixed ('am)lever blade
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121 rLoose boll _ooI' /

° II !
I_ , 13-Percent chrome steel

_- i o 2014 (14 ST) Aluminum
-10H " o Titonium

h____ _ O Inconel X J

II \ _ 15-Percenl chrome steel

b 81 t _ (lubricoted with molybdenum-
l] disulfide)

"._ .....

 41_ _ _

5 10 15 20x1020

Centrifugol force, Ib

Fmur_.s 23.---I,]tt'ect of solid film lubricant, molybdcnunl

disulfide MoS2 on damping of loose blade.

cannot 1)e excited if the pinned arrangement is

properly designed (ref. _o.2). In higher-vibration
modes, root stresses are also reduced because the

blade is not mechanically restrained from bend-

lug. In addition, damping friction is provided

1)y the side faces of the root tongues on the disk

and Made. This damping is not reduced by cen-

trifugal force as the speed increases. Another

special root that provides supplementary damp-
in K is shown in tigm'e 21. In this vii)ration

damper, developed at the Lewis laboratory, pins
are retained in radial holes in the rim of the

rotor disk. Centrifugal force presses the pins
against the 1)lade appendage. Oseillalions of

the blade cause movement of lhe pins and pro-
duee friction between the mating surfaces of Ihe

blade, 1)ins, and disk. In the model investigated,

the special root. device reduced the stress ampli-

tude to one-tenth the magnitude of the same

assembly with the pins removed.

The device shown in figure _o5 has been sug-

gested at the ]_ritish National Gas Turt)ine Es-

tablishment as a means of adding internal damp-

ing by design and fabrication. The blade is

split to induce supplementary friction, the two

parts being held together by high-damping elas-

tic celnenls. Yibration causes the mating surfaces

to move relative to each other, lhereby inducing

friction and limitin_ the stress amplitude. This
device has never been evaluated in a full-scale

colnpressor.

Blade --. .....

Appendoge 7
J

Rotor 7

Pin ;

I
/

Slot for pin -/

FI(;URE 24.--Special device providing addilionM exterlml

d'mq)ing.

Excitation by obstructions.--In addition to mini-

mizing aml)litude l)y adding d'unping and im-

proving the resislance of the blades to fatigue,

lhe desi_zm'r sl_(mhl reduce the exciling forces

likely to cause vibration. ()bslrmq ions lo smooth
airllow should 1)e minimized. When such ob-

structions are necessary, su('h as in the case of

front bearing SUpl)orls , a vii)ration analysis

should be made to ensure 1hat the frequency of
excit:dions will not coin('ide with the natural

frequency of the 1)l:ute at likely speeds of opera-

|ion. Streamlining, unequal spacing, and plac-

ing the obstructions as far ahead of the blading

as possible in a relatively low velocity region

will hell> minimize the excilation. The effect of

534962 61 - 6
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F
a)

Shape after
riveting-..

Section AA
(b)

(a) Assembled blade.

(b) Airfoil cross section.

(c) Prestrained blade half.

c)

FIaURE 25. - Means of increasing internal danq)ing of
compressor blade.

artificially introduced wakes from obstructions on

the vibration amplitude of compressor blades is
described ill _ference 23.

Excitation due to rotating stalL--Through exten-

sive investigation of rotating stall, the princi-
ples involved and the exciting forces produced

are beginning to I_ undemtood (ref. 24). Means

of elilninating the effects of rotating stall are

becoming evident (ref. 05). For example, block-

ing off some of the incolning air at part speed

by 1)allies, or orifice plates so that the intake will

not exceed the air-handling capacity of later

stages has proved successful in some engines.

The vibration amplitudes with and without such

baffles are shown in figure o6. Without baffles, a

strong three-stall pattern was present which pro-

duccd stresses as great as ±26,000 psi. With tile

hub-tyl)e baffle a turbulence was created around

the hub, but the stress was reduced to _5000

psi. The baffle, ramt) , or similar blocking de-

vice must be retracted at full speed of the com-

press()r. Reference 96 reports the improvement

in vii)ration conditions 'rod corresponding loss

in performance of a whole series of baffles over

the entire speed range. In this investigation, a

baffle I)lo(,king only 5 percent of the inlet 'lrea

broke up the periodic nature of rotating stall,
and the nmximmn stress was reduced from

_60.000 psi to ±2().000 psi. The loss in corn-

_24

cJ :

16 ¸
>,
b
o

:g 8'

o L

pressor efficiency resulting from the 5-percent

baffle was less than 2 percent, even at rated speed.

Tile use of variable-angle inlet guide vanes has

,tlso been considered as a means of reducing

rotatihg-stall characteristics. In one case studied

at the Lewis laboratory, it was found that such

guide vanes changed the stall pattern from a

tip (figs. 16(d) to (f)) to a hub pattern (fig.

16(a) ). This latter condition reduced the ex-

citing energy absorbed by the rotor blades (can-
tilever mounted, attached at the hub). The stress

level with the standard angle setting was ±40,000

psi. With the optinmm angle setting for this

vibration condition, the vibratou¢ stress in the

rotor blades was reduced to ±5000 psi. The

variatle inlet guide vanes are not as effective as

other means of alleviating rotating stall because

they readily control only the angle of attack to

the first stage. Changes in the other stages are

relatively small, however. ]f the stator blades
are of cantilever construction attached to the out-

side casing, the change of location of the stall

zones from tip to hub, as observed in the par-

ticula" engine investigated, may induce severe
stator blade vibrations.

Des gning both several front stages of variable

stator blades and varial)le inlet guide vanes should

prove far more effective titan varying the guide

vanes alone. Several advance-design engines use

varia/,le stators, which, however, greatly increase

the cc'ml)lexity of the engine.

A _ery effective and less complicated remedy

for r_,tating stall is the addition of interstage

Meed at |)art-rated speed. The bleed diverts

32×0 -_
!

rF_rst s'oge, FSecond stoQe,

/_"'._, --I_o'fe Z no boffle

]//'_Xkk_/Firs,'ond _:e:.ondstcge'_. )

J _e_,* hof-f_ek._":/

Engine speed,percent of roted

];'I_;['_{I 2it.- ]':tf('('t of inlet I,'*ffh,s on vibratory str(.s-es
('allsed by rul:tliltg stxdl.
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some of tile inc<>ming air from the intermediate

and later stages which are unable to pass it on.

Bleed provides the added flow area desired at

the rear of the compressor (fig. 14). Data illus-

trating the direct effect of bleed on rotating stall
and vibration aml)litu(h' h'we not yet been ob-

tained.
MATERIAL SELECTION

In selecting a material for compressor rotor

blades, the tensile strength, fatigue strength, im-

pact strengih, density, and damping properties
nmst all I)e considered. The majority of the

rotating COml)ress(w lllades are made from 403

stainless steel, heat-treated to give the desired

tensile and fatigue strength without too great a

sacrifice of impact strength and stress-corrosion
resistance. The reason for the preferred use of

403 stainless steel can be deduced by comparing

the lir(qIerties ()f all other feasible materials with
tb<)se ()f the 403 stainless steel (table I).

Tensile strength and density.--The centrifugal

hind is the I)rimary load acting on a rotor blade.
The centrifugal stresses in the blade are directly

l)rOl>(/rti<)m_l t<) the material densities for a given

blade design made fr<)m different materials. The

(.omparative slrength of v'n'ious materials is

given l>v the ratio of the l>lade-material tensile

strength t- either the centrifugal stress or the

density. This ratio, c<)ml)ared with the same
ratio for 403 stainless sieel, 'd<)ng with the in-

dividual tensile strengths and densities, is listed

in table ]. The nmznesium, aluminum, and ti-

l.mium alloys apl)ear t() I)e superior to the 403
stainless steel. ]hmever. this comparison is based

on r+)()m-teml)er'lture l+r()l)erties, and many of the

newer, ldgh-l>resstm'-rati+>, high-fligllt-spee<l jet

en/ines will have COml>ressm" outlet tenlperatures
near ()r above 70i) c I:. Therefore, tim different

materials 'n'e also c<)ml)ared (m the basis of 7 )0 °

F l)r,q)erties. Otdy the litanimn 'dloy now al)-

pears su|ieri(n" to 4():_ stainless steel. Obviously,

existing plastics are not suit'd)le for operation

in the latter stages of high-flight-st)eed com-

press()rs. Materials ('ararat ])e evaluated on the

basis <)f tensile strength alone.

;Fatigue strength.--The most common cause of

compressor failure is ,fatigue due t<> vibration.
Theref(n'e, an accm'ate material evahmtion must

strongly <..nsi(ler f'ltigue stren,,zth. The fatigue

strength (endurance limit) or the vibratory stress

required to produce failure in one hundred mil-

lion vibration cycles is also listed in table I.

Since the blade operates under the simultaneous

action of both centrifugal and vibratory stresses,

the effect of the centrifugal stress in reducing the

alh)wable vibratory stress nmst also be consid-

ered (ref. 27). Except for mmsual cases, the

endurance limit varies directly with static tensile

strengt h; hence, materials of good tensile strength

are expected to lmve good fatigue strength. Ma-

terials of high tensile streng:th and high strength-

to-density ratio are ideal for cmnpressor blade%
since these two clmraeteristics will improve the

allowable margin for vil)ratory stress. Type 403

stainless steel is good from I)oth these stand-

lioints. Fatigue strength of rotor blades is af-

fected by compressor speed, which increases the

mean stress, as shown in figure 27. The modified

fatigue curve as corrected for the mean stress was

presented earlier (fig. 11).
Material damping.--The damping in a system

determines the amplitude, and consequently the

vi/n'atory stress, for a given exciting force. A

material may lmve very high fatigue strength,

but if the damping is w, ry low, the material may
have a nmch shorter life than one with moder-

ate fatigue strength and high damliing for tlm
same exciting force. Material danq)ing is the
most reliqble of all the sources available. Root

damping may vanish because <)f high centrifugal
force or mnlfmlctions of an external daml)er.

Aerodynamic dampin,.," may vanish because of

!

I First

i _
20 40 60 80 I00

Speed,percent of roted

F_{:(:RE 27.--Fati,.,ue strength or Mlowablu vibr:dory
stross as aft'coted by rotl)r _becd.
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FIGURE 28.--Effect of vibr,dory slress oll internal damping

of various materials.

Ulffavorat)le toni)ling belween the aerodynamic
and elastic forces. Material damping, on the

other hand, is always present for limiting ampli-

tude buildup. Some materials display increased

internal damping qs the vibratory stress increases

(fig. :28). Thus, the damping is highest when
the need for it, is greatest.

The damping values vary widely deI)ending on

lhe type of material (table I). The damping is

given as logarithmic decrements in percent or

the rate of decay of the vibration amplitude in

successive cycles after the exciting force has been

removed. Type 403 stainless steel has the high-

est value (2.8 percent) among all the conventional

metals. A theory on the cause of exceptionally

high values forum for 403 stainless steel is dis-

cussed in reference o0. The principal reason for

the wide usage of type 403 s|ainless steel is its

high dampin,z value. The internal damping of

steel depends largely on its composition. Note,

for example, that type ,304 stainless steel has only

0.:2 percent damping. The internal damping of

403 stainless steel depends also on heat treatment

(ref. 6). An incorrect temper of the material

may result, in a logarithlnic decrement of only a
fraction of the value indicated in the table.

Therefore, it is very important not only to use

the proper steel, but to apply the proper heat
treatment.

Aluminum and titanium show logarithmic de-

crements approximately one-lifth those of 403
stainless steel in its optimum condition. This is

one reason why the early use of aluminum in

compressor blade materi'fls was discontinued, and

why titanium must be fully evaluated before it

can be adopted.

The metal TP-1, which consists of iron pow-
der infiltrated with copper, has a logarithmic

decrement of 4 i)ercent, which is high for com-

pressor blade materials. However, the reliabil-

ity of the material for rotating blades has not
been established, and at the present time, ils use
is limited to stator blades.

The plastics CTL-91-LD, PDI;-7-669, and

DC-o,104 all show outstanding internal-damping

characteristics. Preliminary tests indicate val-

ues of "tbout 1:2 percent: (ref. :2S). Blades of such

ma|erials wouhl, therefore, be very difficult to

excite to high vibration amplitudes. Structul-

ally, |he plastics lmve sufficient strength, as veri-

fied by the 100-hour endurance run at rated speed

in a full-scale engine (ref. oS). Initial tests,

however, indicate that the present plastic lanfi-

nares have only one-fourth the impact resistance

of type 403 stainless-steel blades and therefore

may become a I)roblem from foreign-object dam-

age. Also, bee.rose of their low modulus of elas-
ticity, they can l)e l)roken during normal han-

dling of eoml)ressor rotors by mechanics.

Preliminary tests of the plastic blades show a
resistance to erosion comparal)le or SUl>erior to

that of steel blades.

Comparative evaluation of materials.--Up to this

time, no reliable system has been devised which

enables the designer to select, the best material

for a given application. For a given blade size

and shape and exciting force, the vibratory stress

is roughly inverse]y proportional to the material

damping, if the natural frequency remains the
same for the maierials compared. Fortunately

for ease of evaluation, the frequency changes very

little for the different metals (table I). The

natural frequency is proportional to the square

root of the el:lsiic modulus divided by the den-

sit3.. Under Ibis restriction of constant, natural

frequency, the best material is the one in which

the product of fatigue strength and internal

damping is highes|. IIowever, in rating blades
of two materials having unequal natural fre-
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quency, the relative lnerit depends on the relative

1)roximity of tlle point of operation to resonance.

Thns :1 l_lade having belier strength and higher

daml)illg may be l)OOl'er in 't particular appli-

cation than another ldade, if its natural fre-

quency is closer to the exciting frequency. Be-

cause the blade frequency deviates appreciably

when plastics "u'e used, no direct comparison is

possible. For one engine, plastics may be better

than any of the metals: for another they may

he worse, depen(tinff .n tim relation between lhe

m/tm'al and t,xcitinff frequencies.

Accurale COmlmrisml of nlaierials is further

complicated by vat'ialions in aerodynanfic damp-

inff for different material densities. In addition

to factors 'dready discussed, resislance to nor-

lna] c(u'r()sion, el'osi(m, alld inlp'tct damage nlust

I)e considered when evahmtinff nmterials. Notch

sensitivity, also an iml)m'tant factor in material

selection, influences the root design and /lie rate

of propagati(m of fatigue cracks originating at

l)oints of foreign-ol)ject dalnage or stress-
c( )l'rosion cracks.

INSPECTION PROCEDURE TO AVOID FAILURE

Inspection during manufacture.--Inspection per-

formed at the present time during lhe nlanltfac-

ture of compressor blading pertains mostly to

dinlensi(mal accuracy aim material soundness.

An iml)rovement in engine reliability can prob-

ably be attained by the addition of the following

siml)le inspection techniques :

(11 A natural-frequency check of each blade

produced is very informative and is relatively

easy and inexpensive. It would reveal any de-

fects in the iml)ortant regions by a lowerithan-

normal frequency and would indicate unfavora-

ble dimensional inaccuracies, such as heavy tip
sections or undercut root sections, which would

also lower the frequency.

(2) Internal-damping measurements using the

salne equipment as for frequency checks would

he silnple. After noting the frequency, the ex-

citing force could be abruptly stopped and the

die-away curve nleasured, from which material

damping could t)e computed. This damping

measurement would check the material compo-
sition and heat treatnlent.

(,3) Nondestructive tests have been greatly im-

proved in recent years. The latest techniques

sllould replace the ohler meth,)ds. For example,

the ilnproved zyglo l)rocess, known as post-
emn silication, detects defects not indicated hv

l)re_ ions methods.

(at) Coml)osition and hardness clm,.ks 'u'e un-

doul.iedly made by some mamffacturers, but ex-

tended use would be hell)ful. Frequently the

nlaterial SUl)l)lier is relied hi)on 1() deliver the

(_orrect material, but mislakes can 1)e nlade by

both the supplier and the manufacturer. For an

item "_s evilical as a ,'.mt)ressor rotor blade, com-

p.siti(m cllecks shouhl ln, made of each batch of

in'at( ri'd just before the cutting be_'ins. To en-

sure against stress-cm'rosion cl'ac]dnK, the bard-

hess of each 1)lade sllouhl be checked Ul)On con>
pletion. Only one (lefeclive l'otor blade is

required to wreck an engine and possibly deslrov
an "tircraft.

Preflight inspection.--At the present lime, en-

gine._ are sul)ject io slandar(1 acceptance tests
prior to release for service. Since vibration is

one )f the princillal causes of disastrous coln-
l)res:or blade faihu'es, and since a delinite 1111111-

I)er )f vibration cych,s is required to produce

failure, the acceptance tests nlay not serve ade-

(tnat,,ly to ensure successful service operation.

T1 e rotating-stall characteristics vary t'or dif-
fel'm t engine models, and variations even exist

amm,g engines of the same model. The "green"

run _,vct'v engine nmst nmh,r_o i)rior to release

for service should be (lesioned to include operat-

ing onditions in which rolating stall and other

susi)_cted vibration inducers :Ire most l)revalent.

Thns, llle effectiveness of this test in detecting
speci[ic engines which might be subject to vi-

brati:m problenls is increase(t. (/hanges can even

be n ade to aggravate vii)ration conditions, such

its v,wy rapid acceleration or abnormally snmll

exit mzzle areas, to duplicate unusual con(litions

whicl may be reached in service. Performing a

vibration survey on each engine is desirable, but

this )rocedure is prohibitive with present instru-

lnent/tion. To give a reasonable degree of as-

sural,ce, at le'tst five or six different engines of a
givm model should 1)e instrumented for vibra-

tion and flow-fluctuation measurements under a

variety of operating conditions, including idle,

acceleration, part-speed range (50 to 70 percent

of nted), and maximum power under both sea-
level and altitude conditions.
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An intensive effort should be directed toward

developing equipment to detect blade vibrations

without altering the engine. For example, a vi-

bration detector under developnient at the Lewis

]ab(n'atory entailed no alteration to the engine

other than Hie addition of small pernl_lnent mag-

nets to the tip of one or more blades. Large

imluction coils were \vonlld around existing en-

ffine p,lrts. If necessary, the magnet-tipped

blades can tie replaced bv conventional blades

after testing, although they have the same vibra-

tion char'lcteristic._ and their strength is not

impaired by (lie niagnet. If the technique can

be developed, the blades with niagnets niay be

used in service f_r periodic checks or for a con-

tinuous record of the presence of vibrations.

These precautions should lie taken until a means

of eliminating destructive vibr.tiion aniplitude is

devised or until oxperimme shows that it is no

h)nger neeessary. Those engines in(ticating high
vibrqtion during tests should not be alhiwed io

appe'lr in service until adequale changes are
nmde to lower tlie vibrations t(i a safe level.

On the initial inslallation of an engine into a

new airframe, several engines sh(mld be s,rv(,y(,d
for vibration eharacterisiics. Be('ause of the ef-

fect of distortion on rot at ing stall (ref. o9), when

inlet duct ink clmn_es are nlade, the engine should

a,,,'ain be cliecked. In fa('t, it wouhl be advis.d)le

re conduct the first rulis of It new enffine with the

engine connected to ducting similar to that in-
tended l<) be used with the engine in service.

Inspection in service and overhaul.--Airport

,'h,anliness and screening will reduce tim effects

<_f erosi(:ql 'ind foreign-object d;ililliTe. ]]owever,

there is a niininmni size (if particle that can be

e,:(moniically removed from runways or screened

from the inlet. Because (if tills ]imitation, en-

gines 'rod particularly the COml)ressors should be

carefully inspected on a regularly selieduled basis.

The engine and the engine nacelle should lie

designed to permit ready tield inspection of a

segnient of the rotor blades for foreign-object

damage. The early stages are most susceptible

to foreign-oliject damage. The effect of nicks is

greatest in these stages, which operate at the

highest centrifugal stress and are most suscepti-

ble to vibration. Therefore, a particular effort

should be made to provide easy inspection of the

early stages as a nieans of detecting foreign-
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object damage. In applications where removal

of the easing for a complete inspection is im-

practical, the principal purpose may still be

served by facilitating inspection of the early

stages. Sighting through the inlet may be ade-

quate in some cases.

Inspection for stress-corrosion cracking should

also be scheduled periodically. For this defect,

however, the evidence is less obvious and special

techniques, such as zyglo inspection, will be nec-

essary. When the problem becomes less preva-

lent through the use of better material or heat

trealnient, this inspection should no longer be
needed.

Tile practice, of blade scrambling during over-

haul should receive considerable study. Research
should be undertaken to determine whether blades

gradually deteriorate in fatigue resistance with

operating time. A compressor may have many

hard hlades susceptible to stress corrosion. If

the bl'ules ;ire removed and run through an in-

spection line with other blades, the hard blades

may become disiril)uted among a number of com-

pressors which are then all potential sources of

engine failure. The current practice is to niark

blades for replacenient in their original position,

because the slight discrepancies in length of

scrambled blades niake necessary _ grinding op-
eralion to cut all blades to the same external

diameter. This affecis tim balance, increases tip

('h,aran(:e, and results in a loss of aerodynaniie

l_er fornmnce.

The maintenance of good records for each

rotor blade for sever,d engines of each new

model would be helpflfl in establishing ilm nor-

real life of blades in a particular application.
The removal (if all blades after a definite time

peri()d in service, regardless of the presence of

daniilge, may possibly forestall some engine fail-
ures. This time period may be increased as im-

ln-ovenients in m'lterials and reduction in excit-

ing forces are effeeted.

Cheeks for indications of blade deterioration

niay lie devised by suitable research. For exam-

ple, the natural-frequency changes or blade elon-

gations are signs of impending failure. The

largest change in frequency takes place in the

vel:v last stages of fracture, when failure is im-

minent. Elongation of blades is evidence of

creep resulting from high tensile stresses, and if
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excessive,indicatesthat failure is near. Creep
may becomemoreof a 1)roblem(]lan it is now
when higher tenq)eraturesfrom hi_zherflight
speedsand 1)ressureratios becometllore com-
mon. Periodic frequencyand blade-lengthin-
sl)ectionsmayserveasa guidein retirinffblades
at,overh'ml.

FUTURERESEARCH

A smmber(if aspe,qsof the eolnpressor re-

liabiliLv 1)rol)lem have not been discussed be-

cause there is no quanliiative information at the

l)reseni ([me on whi,'h to base decisions. For

extmlple, it is al)parent th'/t the structure and
material ()f !he eompress(w outer easing have a

decided effe(q on the extent (if damage if a rotor

blade fail>. A ru#z_zed easing would protect the
remaimh, r of the air('rafl but the internal dam-

affe would be heavy; a very lig.ht ettsing " wouhl

1)ermit a failed Idade 1o escape, thereliy mini-

re[zing internal failure, but making possiMe

damage to oiher vital 1)elms ,if flu' aircraft.

Experi(,n('e indicates that, convent ional aluminum-

alloy ('asin_s usually retain 1)lustic, almnimuu,
or bronze blade failure,,<, bill lie! steel t)htdes

(fi_s. 1 and _2). The ()l)timmn degree of failure
retaimnent should lie esiablislwd 1iv t'uture re-

sear('h. The greatest l)roteetion may I)ossibly be

obtained I)y using a dual ('asing. The i,mer

easin_ would lie made of a ihin material which

('mlhl readily be pier('ed by the blade fragment.

An air sl)aee or other lvtaining medimn would

l)reveli! lhe broken blade frmu star(inff a build-up

()1! failure wilhin the compressor. The outer

(.as[n,.," wouh[ be very slrong (o prevent penetra-

tion of the brok(,n fragnienis, thereby 1)rote(qing

other engines, air('r'lf(, and l)assenffers.

Another su_'gesiion warranlinff fulure resenr(,h

is (he investigation of 1)urposeful irregularities

in the I)lade rows as a means (if suppressing ro-

tating stall. Rotating stall depends on sue-

tess[re stalling of adjacent blades for its propa-

galiml. If, for example, the angle of attack of

several blades in e'tch stage is made nm(,h lower

than that of !lie other l/lades in the stage, the

1)ropaffa(i<m may be disrul/(ed t>y keeping one

or more blades from s(allinff even with (he in-

crease in "ingle of a(ia(q: due (o the addition,d

airflow from adja(.en( passages.

Rest.arch should also be conducted to deter-

mine whether there is a certain operating life

after which it is economically advantageous to

replac_ certain rotor blades. Front-stage blades,

in l):uticular, are subjected to higher static and

ell)rat try stresses .rod, lherefore, are more likely

(o fat th'm latter-stage blades. Useful operat-

ing life is largely a funeli(m of the particular

engine model and tyl)e ()f service imposed on the
unit.

Shr,)udinff and lacing wires are used (o tire -

hmg [)lade life on some jet-engine gas turbines

and ih the steam-turbine in(lust W. Analytical

and exl)el'inmn!al stress analyses should be car-

rie(l out to evaluate the merits of minimizing

vii)rations in rotor 1)la(h,s in this w'D-. Shroud-

inff ot staler blades greatly decreases suscepti-

biliiy Io staler vibralions. In tile staler blades,

the shroudin_ does not impose any additional

sieady stresses, ns it, does wiih rolor blades.
Considerable effort is warranted in the de4,el-

Ol)m(,n_. of new nmterials for <'Oml)r(,ssor blades.

The present plastic laminaled 1)lades are very
l)r(,niisin;: but lit'(, ]hnite(| hi ()perathlg t(,niper-

atltre, asld eren "tt low leuiper'i, tures have very
low noduli of elasticity, hnprovements are

being" s"q)i(lly developed_ however; and future

l)laslie lnalerials ilia)" overcoille tile ieillperature

lira[tat on. Better melallie malerials shouhl also

be dev,lllped 1o completely eliminate the stress-

corrosim problem wi!hout saeritiee of tensile

ai)(l fa'igue strength and internal (lanii)ing; in-
(-relise(t internal dainpinff is always desired. ]_n-

vesliga ;ion of coml)inations of engineering mate-
rials nmy produce a Made that is resistant to

damag(, by small-sized foreign l)artieles and is

h'ss suseel)til)le (o fatigue when nicl:ed by a

foreign obje.ct.

Deve opment of devices to detect, the existence

(if eon t)ressor 1)lade vibrations wouhl greatly

aid in iniproving eolitl)l'i,ssor reliability. A small

light-w,ilzlit, device 1)laced on tilt, eSl_ine that.

would warn ttie pilot of operalinff conditions

whMl nduee bl'lde vii)rations would lie helpful.

Also, i_ strumen(at ion is needed, regardless of size,

(hat eo i1(l tie placed near nn engine during tests

1() de(e_t viln'ations without any 'llteralions or

wiring in !lie engine. Such a meehanisn_ would

ei)al)le _he nianufa('iurer to cheek every engine
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'rod evaluate ducting i)rior to release. It would

also make possible the study of vibrations to

devise methods of prevention or suppression.
Additional research on various means of re-

taining blades in the rotor 'rod lnethods for pro-

riding added dtm, ping in the blade-root system
may result in a conliguration tlmt wouhl elimi-

nate vibration-fatigue problems of rotor blades.

The loose-pin or hinged 1)l'lde requires addi-

tional refinement to attain the oi)(inmm propor-

tions and "u'rangement of (he various parts, but
is ah'eady a great iml)rovcn|ent over more con-
venIional root forms.

CONCLUDING REMARKS,

The use of axial-fl(,w compressors in engines

gives belter performance characteristics, even
lhou,dL_ axi,d-flow compressors are less resist'm(

to failm'e than centrifugal compressors. Cur-
rently, the trend is toward the use of axial-ttow

colnpressors. Therefore, the l)resent study has

been confined to the 'txial-flow compressor. Dif-

tlculties with compressor blades arise mainly fro)),
the following sources :

(1) Break'tge by foreign objects

(2) Accelerated fatigue originating at a nick

caused t)y :_ foreign object

(3) Accelerated fatigue originating ")t a stress-
corrosion crack

(4) Fatigue caused by vibration, usually caused
by rolatin K stall.

Failure of one compressor blade will, in most
cases, cause a chain reaction of blade failures

and result in immediate failure of the engine.

Every effort must, therefore, be made (o avoid
compressor blade failure.

Blade breakage by foreign ol)jecis can 1)e re-
duced by the use of engine-inlet screens. IIow-

ever, a lower limit, to screen mesh size is im-

posed 1)v considerations of the inlet-air-I)ressure

drop 'rod the associated reduction in perforinance.

Small <>l)jccls can pass through the screen and,
while they may not cause in|mediate blade fail-

ure, they may result in nicks in (he blade that

may serve as nuclei for fatigue. IIence, it is

essential to provide means for inspectin_ com-

pressor blades, par(icnlarly those of the forward

stages, for signs of damage. Engine modifica-

tions should l)e made so that inspections c'm be
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made conveniently and quickly at frequent in-

tervals. In addition to inspection for foreign-

object damage, tim blades should be checked at

less frequent intervals for evi(lence of stress-

corrosion cracks, or other signs of deterioration.

The presence of stress-corrosion cracks would

indicate a. need for a change in blade heat treat-

ment, material, or fabrication technique.
Rotating st'ill is one of the principal causes of

severe vibrations letlding to fatigue failures, even

in the al)sence of foreign-object d'unage. This

1)henomcnon occurs mainly during acceleration

of the engine through the speed range from

50 to 70 percent maximum speed. The engine
manufacturer should determine the m'|xinmm

vibratory stresses obtained durin/ rotating stall

for each engine. This test shouhl preferably
be made with inlet-flow distortion :rod reduced

exh.mst-nozzle are_ (o simulate in steady °per-

ation the conditions expected during acceleration.

Corrections to the engine desigm such 'ts inlet

1)aflles, interstage bleed, and v'u'iable-angle
stator blades should be made if the st'all con-

dMon is severe. The vibration problem in

gener'd can be considerably allevia(ed by using

special root configurations and daml)in / devices

and invesCig')ting different blade materials. Plas-

tic laminates show 1)romise because of (heir very

high intcrn:d damping, 1)ut "_t present they lack

high-tenH)erature (above 500 ° F) strength and

rigidiiy.

Compressor relial)ility of existing units, as well

:is of nn)re adv'mced desi_l engines, can be im-

1)roved by addition.d inspection l)rocedures dur-

ing manufacture, in service operation, before

flight, and during overhaul. Provisions for

convenient inspection and blade replacement

should 1)e considered in designs of new engines.
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CHAPTER V

COMBUSTOR ASSEMBLY

By PATltlCK T. CIIIARITO

SUMMARY

Service records for lurbojet e,1_yines were stud-

L_d to ?eal'n the types and causes of eombustor

/,_ilures and to obtah_ _uggestio_vs for improving
e_gi_e reliability. The statistical data derived

from the records +'how that the inkier liner con -

si.,'teldly accounted for the largest _:umber of

eomhus/or failures in all engines studied, a_l

,_,,:cc,'_tl rephwemv_ts of liners were usually m_de

5etwee_ major overhauls'. However. liner fail-

.ure,_' rarely were the eau._e of an el_gine overhaul

or ,m, e_gbw faUure in flight.

Lbwr,_' usually fail bccau,_e of thermal ,s.tresses

ind_¢eed 5y large temperature gradients a,nd prop-

,wated 59 thermal eyeli_g a._soeiated _cith ,_tart-

il_g, aeeelerat_g, at_d stoppi_tg the enghw. Fail-

,res are accelerated by such factors as improper

fuel flow, carbon det)oMt,_, a_d ,severe transients.
I',_o s_rio_lx flight ,weide_ts that occurred in

195.3 _were attributed to ;g_titer a_d fuel-nozzle

11_ t l.fU_C t _o nlng.
Nome comm,er_&' a_v made regardi_g choice of

m,tterials, design a_d f, brlcatlon eon,sideratlons,

at_d operatio_al practices for improving reliabil-

try. Addltiolml i_form_ltion, for example, a bet-
_er umtcrsta_ding of the eomph_x failure mzeh-

,_nlsm. is _eeded in order to provMe design

crlferia for preventD_g faihtre,_.

INTRODUCTION

The combustor of a turbojet engine consists

primarily of sheet: metal, which is required to

satisfy a variety of specifications. For example:

With respect _o fabrieati<m, the metal must have

ductility for initial forming and nmst be join-

able such as by welding; and, while in service,
it must resist, the corrosive action of hot gases,

cracking due to thermal shock and fatigue, and

dislorli.n. Furlhermore, small thicknesses are

used 1o save engine weight.

Typical engine installations of combustors are

shown in tigure 1. The nonuniform impinge-

ment of hot, gases on the liner walls causes hot

spots and often abrupt temperature gradienls.

'l'emperat ure gra<lienls "tre difficult to predict and
exhilfit a random behavior. Their effect is usu-

ally evident in severe wart)ing and cracking of
liners and eventual breakout of sheet-metal frag-

meres. The lransilion liners and cross-ignition

_ubes are likewise subject to cyclic thermal

slrcsses that can cause cracking and l)re'd¢out of

fragmenls. Carbon deposition in lhe combustor
can cause malfunctioning of fuel nozzles and

igniiers.
Service records were studied in order Io be-

come_ acqn,dnted with the difficulties with pro-

(luction combustors as background for the dis-

cussion of methods for improving engine relia-

bility. The purpose of lhis paper is to present

(1) the failure st'_listics thai were derived from

lhe service records, (2) a discussion of the types

and causes of the failures, and (3) some sug-

Keslions for handling the combuslor for im-

proving engine relial)ilily. Additional informa-
/ion that is needed 1o inq)rove relial)ility is also
mentioned.

FAILURE STATISTICS

SOURCES OF DATA

Ai)proximately 1500 Disassembly Inspection

Reports (I)IR's) for lhe 3-month period from

August lhroutzh October of 1953 and a summary

of jet, aircraft accidenls caused by engine fail-
ure or malfunciion during 1953 (ref. 1) were

studied for the three engine types to determine:

(1) the way combustor comI)<menis fail, (2) the

mean life of a component as indicated by its

81
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I"I_URE l.--Componenis of combustors in ty I dca[ engine installations.

mean replacement time, aim (3) the effect of a

component failure on the engine and flight safety.

STATISTICS

Combustor faihu'e statistics taken from the

i)IR's are 1)l'oken down in table 1. The data for

old (l)reviously overhauled) and new (not pre-

viously overhauled) engines are given in l)arts

(a) and (b), resl>ectively. The values for l>oth
are combined in part (e). It is aI)parent that,

allhough a larger percentage of cracked liners

are found during inspection in overhauls than

any other ('.nll)ustor Cmnl)onent failure, liner
failure is rarely a l)rimary cause of en/ine over-

haul.

()f all engines analyzed, lhe average percent-

age lhat had some failm'e in the coml)ustor was

69 l>ereent for engine A, 27 percent for engines ]},

and 40 l>ercent for engines C (table I). The

sheet-nletal liner consistently acc(mnted for the

most failm'es. In many of the engines all the

liners were cr:u'ked, and ahnost always the lin-

ers of tlw ignition chan,l>ers were cracked. I[ow-

ever, it is important to note (see colunm on pri-

mary c_uses in table I) that, failure of the com-

bustor liner is given as the reason for sending

only o_ e engine to overhaul. The primary cause

for ov,,rhauling 33 engines C (5 percent) was

sheet-n etal failure in the outer shell, and over-

hauls (f 11 engines B (2 percent) were due to

failure:, in the transition liner. It is interesting

to note th'tt the largest percentage of liner fail-

ures o(curred in engine A, which had the larg-
est per,'entage of fuel-nozzle fai]nres.

The nlean reI)l'/cenwnt time for ]iners com-

lmted ,rom the DIR data for new engines was

17,3 holws for A, 185 hours for 1_, and 3(;5 hours

for C. For engines C, [he mean replacement

lime g:ven is prol)'tbly hi_her than aciu'fi time,

l)ec'tus_ the DIR data fro' this engine do not in-
elude lner changes made in the field. In fact.

the mean life (measm'ed to the tirst, sign of a

crack) of liners for all engines would usually be

less th:m the mean replacement lime, because

field h speetion of liners is usually made inci-

dental o maintenance of olllel' engine paris. The



FACTORS THAT AFFECT OPERATIONAL RELIABILITY OF TURBOJET ENGINES 83

++,

.+L'

A

r f+

+jr

F

-jr

I.
,..+

B+

S,)_¢IH:.}

.+_.ll!tll ! J( [ J,iI|HI[I _

17 +l,_4(TlIttll

I_:I¢_I I u.l+).I,b I

.I.)((llltl _

_,)?;llq_.)

,_:,1_!1111,II | .I,ItllllTI X

"r .£,)gtllitll

_, Ill 1<} _ lll+++}d,k< ]

.I,+qlIItt N

:,,)M+U.)

7_.Itllll +.If I .[_+I(Itltl N +

,+ if,ith[,,
G' It:l++£ l I£,+;}.I,+, |

.h+qlliTI _

_,b:_ l LIT,)

'_dTPIH ! lil .h+4 lit[ TI .\"

.l,+{_t IIl HI

-- if: i_i I Itla,_.l,_ d

.l,+I]IIl tl N

+,*hi,l;,>

(.If;lit + Id .t,+q IZItl N

I'+qlUHLU

.t,)qHIrl N

.(.I1_t[l !.IC l .I,II I Ill I Ic'x _

.hl_([ll lltl

it]ll)l l 11 tl+)L]') d

.l,+q lIItl N

_q,+_ [111,)

.+_ ll![ll+,[ll ,I,+lltllll N"

"_ .h}(ltlltll[

_- I_ l+)] lu,+:).n,b I

,i,_qlilll N

fi.ll_tllTd_[ .I,+HHIII N

t_- .l,)<ll[l ill I

_- I_lu I Itl,+,).h++l

.bltlttlll N

NtI+[I_P+)

+(+ll+t It ++it I +h+tltlZtl

.+ .l,+qftltitt

|1;lcH'ltl_+')'l'+d

d,+t(Tlltl N

+_+l_l[]l_l h_qltHT1 _

+_+ .I,_(IIIlIIT I

--_ ll:II)l ill,+ ).t,+.l

.Iot_tlllt_

S,+_[II::)

(IIHIIT.IIT d,l!llllTl%"

Wlu_ lU,+.+.bb I

.blIUl|tl N

_J

i

I] ' -':I:: :

I: '.++" --:..: I

I: :: I I

I: +:., -_°+- I '

I

I ' : I

I ....

' I ......

'1_b

i I

' :_+ +:+ i_i!

i i i! _ _ _ _ _ i

I I : I i i i

r

i _ i i i i I ] i i

, i , _ , ,

, [ ' , , ,

il ii,_:
i I I i _ i :

e+

t

!

_ +++-m +..+--

I I - I I : I I I

-" i

-+ i I i

: +_+ w -- , , , ,

! _ _,°'= ! '

-+-
?+ = -_ .... .

+

l -
Ii [ : i" I : I

:!

I
i
l

'1

i l

l



84 TECHNICAL REPORT R-54--NATIONAL AERONAUTIt'_S AND SPACE ADMINISTRATION

replacement of liners during scheduled inspec-

tions is adequate, however, because the cracks

progress relatively slowly. Before February 1,
1955, recording of field repairs oil the DIR was

optional. At that time, a technical order was

issued that requires a record of all field inspec-

ti<)ns, even if no replacements are made.

()tiler faihn'es (e.g., cross-i_mition tulles and

igniters) are also included in table I.

EFFECT OF COMPONENT FAILURE ON ENGINE OPERATION

+Warped liners cause abnormal temperature dis-

tritmtions and nmy result in burning of nozzle
vanes amt turbine rotor blades. Cracks in lin-

ers 'n'e probably tolerable until they cause frag-

ments to I)i_ak out. Sheet-metal fragments usu-

alh scratch or nick vanes and rotor blades,

producing stress raisers which shorten the fatigue

and stress-rupture life of the blades. At times,

more damqge is done. The DIR's on the 1500

engines studied listed only 5 liners and 12 tran-

sition liners in which failures had progressed to

the point where fragments had broken out. The

size of the largest fragment broken out of the

inner liner and the resultant damage are as fol-

h,ws (the fragment froln a transition liner that

caused the most damage and the recorded dam-

age are also listed):

(1) Inner liner: In an A-7 engine with a 3-

by 5-inch sheet-metal piece missing from an ig-
nition liner, all :)5 lurt)ine buckets were dented

at the leading edges, and 26 of the 72 vanes

were dented at the trailing edges.

(2) "l?ransition liner: In a B-3 engine with

V/.)/_ inches missing from the aft retainer strip,

all 96 :urbine buckets were bent approximately

!/_, inch on the leading-edge tips, and 58 of the

(;4 vanes were nicked, bent, and torn along the

trailing edges.

No record was found, however, of buckets that

suffered immediate fracture due to the impact of

sheet-metal fragments.

Four of the 205 flight accidents due to turbo-

jet-engine failure or nmlfunction recorded tff the

IY.S. Air Force during 1953 (ref. 1) were at-

tribute(l to combustor-<'Oml)onent failings. Tim

results of the analysis of these four accident.s
'u'e smmnqrized in tal)le II.

CAUSES OF FAILURES

MECHANISM OF SHEET-METAL FAILURE

I)uri:,g nol'nntl engine operation, the sheet-

metal lqmr walls "tt'e heated by the impingement

of hot ._ases. Be<'ause of nonuniform l)urning of

fuel and mixing with second,try 'fir, the liner is

locally he:lied. The deformations of the nmte-

rial res dting from lhe local expansion may c'tuse

bucldin_ 'rod also local plastic th)w in the hottest

spots b'cause of thermal stresses induced by the

resist:u ce of the cooler surromMing metal (ref.

2). R4,peated heating and cooling of the liner

associated with starting, accelerating, and stop-

ping tl,e engine will cause rupture by fatigue,

esi)e('ia ly at stress raisers such :Is louvers.

"I'AI_]+I; 11. +t,'I,[(;IIT A('(qI)ENTS CA['S],:]) BY C(LMIIt ST()II l,'All:i'lil.; <)1_ M.x. IA:UN(+TI<JN

[Ref. 11

I I
Aircr:dl I';n_itw I .'_cci(h,nt Brief l:indin_zs '

tYl.'
- ' ..... i

V ;'_ 1_ I0 -'_]ill:>t + EXC('Ssi',e exhaust _:t': Ii,m|)<,"altlr(, "i'w<, liners f:tih'<l (':tnlsirl_ tlamag[,

to n,,zzh' (ti:tl)ht+a_n_: h<)h' burn.d
in :fit fusq'[:,/.

l+" :; ]/ I(I Maj,,r l+'l:l-u,out it, flight. Airc_ ,fl (l('- ]_liilltI" h':.l> f<mh'd c:tusin_ <,t,lx
str(,y,,<l :Lfl['r :tiry;lttrt :+tte]nl)tS [>It(' Cll]l "{I) liT'l'

tl nsll('i'('ssful

[" 2_, 1¢ l(I M:lj(,r ]';n_ine eXld(_i<m (htrin_ lli,_,lt ])robal)ly sl)r:ty <ff fuel nt)zzle 7 1
dist_)z'tt'(t at.t ('alls['(l +'xccssiv[t
|l(':tl in litwr

i

1" l (' 7 N[ittl,r l+ost l)(+wt'r on takeoff r(Al l)()ssibh' li'I,l])[)rtlry (+:tl+t_,,t+ d,,l_osit
+ (m ftwl t.,zzle si_r:ty lip- +

............ i
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FmVRr; 2.- -Longitudinal distribution of mel'd t.cml)('ra-
turc on top "md bottom of liner (ref. 3).

Longitudinal distributions of metal tempera-

ture measure(1 along the top row of cooling

louvers and the boltom (or side nearest the en-

gine shaft) row of air-intake holes in a liner are

shown in figure 2 (from ref. 3). The abrupt
discontinuities at the louvers and the wide vari-

ations between rather close air-intake holes may
be seen. The hottest belt was ne'lr the middle

of the combust()r liner. The distrilmtion of metal

temperature measured or(rand the liner near the

hottest belt is shown in figure q. The bottom is

hottest, reaching 't maximum of about 1600 ° F.

A thernml /zradient of tls muc]l as 700 ° F per

inch was measured at 8i)00 rl)m (of ,q)l)r<)ximately

70 ])ereent rated speed).

t_;eeause liners are loaded essentially only to

t]le exit,lit of self supI>ort , they are subjected

mainly to thermal stresses. Typi(-d liner fail-

ur(,s are shown in figure 4. In the upper liner,

the era<'ks pr()gr(,s_ed far enou_]l from the louv-

ers to the ai,'-intake holes to l)reak om a frag-

ment near the }tartest belt. A burned hole.

buckles, and ('raM_s can he seen in the h)wer

liner, The ,'_)ri,,rs (,f _he lr:m_iti(m liner (in-

eluding pieces of the aft retainer strip) were

also missing.

PACrORS TH*,T aCCELER*,TE COMBUSrOR FAILURES

Otrbon deposits near fuel nozzles and igniters

distort fuel spray patterns and may cause local-

ized hot spots in the sheet metal. Carbon that

accumuhttes elsewhere along the liner _zenerally

interferes with the gas flow 'rod may cause over-

lemi)erature and distorted temt)erature distrilm-

tions at the combustor exit (turbine inlet). Car-

1)on deposits found around the igniters and fuel

nozzles in two engine types are shown in figure 5.

The deposits on the igniter of the combustor on

the left will dist,_rt the top side of the fuel pat-

tern. In the at]mr combustor, the e._rbon (which

grew on one electrode) ol)strueted more than half

of the eombustor passage immediately aft of the
nozzle and ol)viously disrupted the fuel sl)ray.

Carbon is 'dmost always deposited on the in-

ner walls of liners, on the fuel nozzIes, and on

the igniters of engines burning JP fuels. The

tendency to produce carbon deposits del)ends

upon the fuel analysis, combustor design, and

engine oI)erating conditions. Reference 4 shows

th'U the lendeney for a fuel to I>roduee carbon

is a function of its hydrogen-earl)on ratio and

Bottom

Thermocouple locations-,,

"1

| o_qo 0 __0 _;eC,:DQC C'q ]
{ ?0:, : ?
l- o"_," o 00G 0¢_ O0 C,, ,0 i

_9" _,rTO0 ° F/in.

8,000

I1,ooo

Bottom

Ft<t:P,,+,: 3 .('ircumf,,retHial (tistrihutil)tl ,+_f m,,t:tl t,mllwr-

:i1111"1' Dt':I]" .I)l.dlP:q }),']t ()f lim'r (ref. ?,L
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FIGURE 6.---T(mdency of a fuel to produce c'u'bon deposit,s

as function (if ]iydrogen-cari)on ralk) and volumetric

average boiling teml)er;iture.

vohlnielric avei'a_ze boiling (enll)erature _ as ilhts-

trated in fi_ure 6. ]{eference 4 also describes a

simple ]aboralory snloke lust:, for detei'niinin_z the

carbon-pro(hieing tendency of fuels. ]}ee'tuse the

selection of fuels is based upon other eonll)ustion

properties, "ix well :ix availability and cost, sonm

carl)on (lepositMl cannot be avoided.

Clo_z_in_ (rf fuel-nozzle p'issa_es and screens
and fuel-oritiee wear afl'ect (he fuel-flow rale an(l

pattern and also cause liner danri_e. Fuel-flow

rate beyond the 1)ernlissible limits w'/s noted

priniarily in enzim, A-7, w]iMi had the highest

percentage of fuel-nozzle m,flfunetion (17 per-

cent) and prolril)ly llee<nnited for the highest

pereenla_e of liner faihu'es (66 percent, see table

I(e)). Althou_zh no data ]l:lve l)een found, it is

expected that heat soak-lmck ]n'iy ac('ounl; for

deposits wilhin the nozzle caused 1)y(]lernia] de-

COml)osition of fuel constituents.

Faulty igniters (.ause unsuecessfu] starts and

prohah]y pro(lll(+e thernntl shock 'tnd ]tl.l'_e teni-

perature _radients in the sheet nieta]. Severe

transients, such :is accidental hot starts and rapid

acceleration ()l" (lereh, r'/tion, also hasten shee(-
met'tl faihu'es il_ the lransi(i()n liner.

Sniall ('ra('ks caused in ]nanufttelure l)y punch-

in_ ah'-hliake h()les ae('eler'tte fatigue failure ]n

t • ] ,liners, lhernl:/ ('velin_ e'luses llie initial ('i':t('ks

to _r()w and eve)i(u:tlly (() exlen(l 1o louvers.

EFFECT OF MATERIAL PROPERTIES

The (enden('y for failure ()f (he liners by ther-

nlal cycling is affected l)y (he l)rol)erties of the

material of the liner, su(.h its thermal conduc-

tivity, <,)etti(:ien( of (hernial expansion, strength

a(. high tenil)eratures, and the resl)onse of the

nmlerial to t't,l)t, ltl(,<l ('y('les of nle('hani('al defor-

mation and l)hlstie fl()w.
The use ()f nntlerials with in<q'ease(1 thernull

('onduelivity will relieve localized hot spots by

(lissil)a(ing the ]teal. Fhune ilnl)ingenient_ tests

,)n snulll ey]in(lelu of several niaterials showed

(he exl)ec(e(] (]ecrease in (hernial _ra(lien(s with

in(.reasin X ('on(ht<'tivi(y (ref. 2). Fi_tu'e 7 shows

_ra(lienls of 1000 ° F per inch nieasured for the

(.onnnonly used Ineonel. This gradient was re-
(hteed (o 71() ° F for Ineonel-elad nickel and to
,-()o,, F for Ineonel-el'id copper.

The nunil)er of flame inipingenient ey('les to

faihire is shown in figure 8 for the niaterials

included in figure 7. A wide spread of values is

indicated, and no consislent relation was found

l)etween nmnber of cycles and severily of teni-

l>erature dis( ril)ut ion (fig. St. The benefits of

('la<l nlelals lhalc ai>proaeh optinluni prol>erties

2OOO
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S-816-- -- Inconel and types

302, 321
Inconel-clad nickel

.... Plated Inconel and
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Inconel-clad copper '

.... Copper

u_ 1600
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3 140C
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800
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]"ICUI],E 7.--']_'cIIll)l'l'lt|llr(' gl'lt(li('lllS lll('ttSlll'ed during flame

inil>ing(qn(,nl t(',-.ts (r(,f. 2).
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Type Thickness,
in.

r-;-i 302, Q033
[] 502, .025, Chromium plated

302, .033, Copper- and nickel-plated
302, .063

I=-i 32 I, .o3o
r---7--'l 321, .030, Copper- and nickel-plated

i I S-816, 0.039

Inconel, .032
151 Inconel, .032, Copper-, nickel-, ond chromium-ploted

l • -- I lnconel-clad nickel, 0.031

171 Copper, .032

Inc_nei-lcladl c°plper'l 031 I [ I I I I I I 11

0 200 400 600 800 I COO 1200 1400

Test cycles to failure

]?II:I'RE ,N. [,'ra(,luro due to rvl)eatc(] flame impingement.

(1)ot imli('at('s average lllllzil)er of cy(![v: for sl)ecimon_

of e:t('h m:tt(,ri:tl.)

necessary 1o satisfy many of the requirements of

sheet melals in high-temper'tture service is, how-

ever. 1)r()u_hl out in li_m'e S. Unfortun'_tely, the

use of chuhlin_ is lmmpel'ed by fabrication
dillicuh ies.

A de('rt'ase in ,'oellleient of thermal expansion

will 1)c l_encti('ial in l'edm'inE the amount of dif-

ferential exl>:msion caused I)y thermal gradients.

The mechanisnl of failure of components by

thermal cycling is complex, "rod much additional

research is required on this sul)jeet. From this
reseavcIt _h(mhl come ideas for the selection of

ilnt)r_J\ed malei'ials "rod for iini)rovemenis in
de_bm

('urn'ant liners are usmtlly made of Inconel

which has hi_zh corrusion resistance. Liners are

being ])lm'ed in l)roduetion made of mild steel
coated with ahtmimun for c'orr()sion resistance.

('el'anlic co'itings are also l)eing developed for

t>roteeting llte surfaces ()f liners made of the

h)wer strategic allov materials. Materials se-
]ee/etl fin' high thermal conductivity may not in

tht,lnsclves ]rove adequate corrosion resistance;

but satisfactm'v, l)l'ote('tive coatings: could pos-

sibly he deveh)l)ed.

METHODS OF IMPROVING OPERATIONAL
RELIABILITY

MATERIALS

The life of lineL's can, of course, be increased

by the use of improved materials. The impor-

tam'e ()f such l)r()perties :is high thermal conduc-

t ivity, low (,(,ellicient of thermal expansion, and

(,that m:Uet'ial pl'<)l)erties, and the need for ad-

(liti.l al rese:wch have ;ih'eady been discussed.

DESIGN AND FABRICATION CONSIDERATIONS

S()lle sheet-metal 1)rot)lares may be solved bv

l lm ll_t' ()f lwavier ,*'l ,es Be.sides im.reasin_ the

slreny.th amt still'hess, in(:rease(l thickness pro-
rides more heat-th)w ;/l'e:t and reduces thermal

_'ra(li,,nts. This lWa(qice is limited, however, by

llm vei_ht pemtlty imposed. Some sheet-metal

failures, for examl)le lhose found in outer conI-

l)us_i_,n chambers, are easily fixed by patching

(ti,_. !)) and (lo not cm)stilute :t serious problem.
lh,,ause lherm:tl _radients will l)rob;tl)ly al-

w:tvs ()[:('ur in sheet metal, it (lesion l)rineiple that

shoull l>e exl)lored is the relieving of lhermal
stress,.'s rather than resisting them. This may

l_e ;ll,l)rOa('hed 1)3" using :t segmented sll'll(!tlll'e
for 1he liner in whi,h exl)an.-ions in any one

SP_']IIPlIt (l() ll()[ illl])()St' Sil'P.";SPS Oil m.i_ld),)ring

Ne_'llt¢'ll ( _.

As l)()inted (,ul l)revi(m.,ly, f'tuhy fuel ilow is

1)]',)1_:I)ly lh(' 1,i_zest s, mr('e of e(,mlmst,_r tr, m-
l,h,s, lh'si(les the fuel nozzle itself. :my of /Its

severd l)arts ,)t' the fuel ,',)ldl',d :m(l SUl,I)ly svs-

FI(:URF 9.- F:tilllr(_ all(l patch in oulq,r combustion

('lmml)or.
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icm may ('(mtrihute t() this deficM,.y. Witll

regard _o tile nozzle, clogged screens or filters
(ti_'. lO) will interfere with the /tow. Such was

the ('ase with another engine type, resulting in

frequent ('ollapse of the screens 'tml severe in-

terference with fmq tlow. Removing these
screens frmn the hot seclion of the nozzle ade-

qual_,ly s,,lved the l)roldem; the screens in the

flow dividers proved to be aml)le. In some fuel

nozzles tlw small slot l)rovides fuel continuously,

:tn(l lhe lar,.2,'e sIol SUpl)lements this SUl)ply during
l)eri,ul -_ of ire'teased (h'mand. If the outer an-

nular lmssa_'e in the n(_zzle were used for the

small ibm. some ('oolin_ of lhe immr 1)assage
would probaldy result "tml the harmful effects of

heat soak-back mi,xht I)e reduced.

Previous research (ref. 5) shows that the use

of a shielded fuel nozzle to prevent carbon depo-

sition also improves its performance, especially
at altitude.

_to"

o

Filler $b,
Screen, '_IL',_j_'_ .

• -%7, '!)._-'it_ _
j.,--

-Screen

(b)

(a) Parts of fuel nozzle.

(b) Cutaway view of fuel nozzle.

FIc. uRF 10. -Typical fuel nozzle showing location of screen
and filter.

The igniter for a turbojet engine must pro-
duce a spark that will ignite the fuel-air mix-

tm'e th'tt flows past the electrodes. If a starl; is

not made within a few secon(ls, the combustor
must I)e cleared of fuel 1)efore a new start is

atleml)h*d in order to prevent overtemperatm'e.

Flameouts during flight impose still more se-

vere requirements upon the igniter for a restart.

If lhe igniter is conled with carbon (see fig. 5),

the ('(mdmstible mixture may be defleeled away
fr()m the electrodes or the electrodes nmv be

shorted. Surface-discharge igniters in which

carbon deposits do not cause electrical inter-

ference are being developed (ref. 6). In fact,

carbon deposits may help their performance.

Bec'mse igniters are not needed durin_ nor-

mal flight, they cause unnecessary interference

with fuel spray and provide a projection upon
which carbon may grow. Retractable igniters

(ref. 7) would prolmbly overcome this objection.
()n the basis of current statistics, it can be

antMpated that several liner replacements will

l)e made between enzine overhauls. It. is there-

fore essential that the design provide for acees-

sil)ility of the coml)ustor for east of fiehl main-
lenance. Disassembly of the comlmstor to in-

spect and replace (lama_ed parts as necessar.v

would help to exlend the major overhaul inter-

val for the engine. If this disassembly is made

without removal of the engine from the aircraft,

the "down-time" for the aircr'tft would l)e kept
to a minimum.

]_ecause overlellq)erature Of the liner may re-

sult from sewq'al cnuses, such as (1) excessive

fuel tlmv, (9.) distorted fuel spr'ty pattern, al,d

(3) distortion of the flame by carbon deposits,

an indicator of excessive liner temperature would

1)e very useful in avoiding Imrning of sheet metal

and incipient cracking.

(?racl(s in the liner caused l)y thermal (.y,.lina

will progress slowly to breakout of :t sheet-metal

fragment that will (lama_e the turbine rotor

blades. Because there is usually sufficient time

for deteming these cracks during a field inspec-

tion, it seems adequate to base a liner replace-

ment on an examination of its condition during

It scheduled inspection.

Mechanic,fl tlnishinz, of the edges of 1)unehed

air-intake holes retarded cracking in liners (ref.

S). The holes were reamed, sanded, and wiper-
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blasied to remove small cracks and worked metal

caused by tlle manufacturing method. The bene-

tits "u'e given in the following table:

Time in
:tcceh'rttted

]ifc l'llll_

hr

Average
number of
cracks in

S(_V_ l1 its-

fabricated
liners

Average
nuln|)('r of

cracks ill
S(!V(ql nlc-

chanically
finished

liners

8 8 2
16 20 9

Although mechanical finishing hell)ed , cracking

consistently started at the stress-relieving holes

even though they were also reamed and vapor-
blasted.

OPERATIONAL PRACTICES

With regard to reliability, it wouhl be prefer-

able to rel)lace cracked liners with new ones.

However, (,()st requires consideration of tile re-

l)air of liners. For example, one Navy facility

claims that a saving of $350,000 was realized dur-

ing 1953 by patching damaged liners (ref. 9).

The mean rel)lacement time of combustor eom-

1)onents is considerably less than desired tilnes

to major overhaul. Scheduled field inspections

and replacements as necessary will therefore help
to extend the overhaul interval.

In view of the flight safety and economic con-

siderations, the engine lnanufacturer and air-line

operator will lmve to work out a policy that

might include the following:

(1) Scheduling inspections of eombustor com-

l)onents depending on operating conditions

(2) Iieplacing liners regularly with "q)proved
used or new liners

(3) l'rocedure for lo .... in,, time on each liner
nse(l

(4) ])efinilion of extent of damage that re-

quires repair or replacement

(5) I)etinition of repairable damage
Since rapid engine failure can result from a

lmdly distorted o-.ls temperature distribution, a

device for warning of such occurrence would

permit lhe pilot to take action that might pre-

vent a ttight accident.

CONCLUDING REMARKS

The statistics derived from the service records

that were studied indicate that the inner liner

consistently accounted for the largest percentage

of cmnl)ustor component failures in all three

engire types. Even under normal operation, the

life .f a liner was relatively short and several

tiehl ,'eplacements were made between major over-

haul._. The failures generally started as buckles

that c'msed cracks. Fortunately, cracks pro-

gressed rel'ttively slowly to breakout of sheet-

lnetal] fragments, and it seems sufficient to base

a lirer replacement on an exalnination of its

condition during a scheduled field inspection.

Alth, mgh there was evidence that sheet-metal

fragl_wnts from liners damaged turbine rotor

bladts, there was no evidence of pieces even as

large as 3 by 5 inches causing immediate frac-
lnre of a blade. Sheet-metal failures were, how-

ever, the prima W causes of overhaul for 45

engines.

Failures in sheet metal are caused by large

temp,w'd.ure gr'nlients and thermal cycling. The

indm ed thennal stresses may cause bucliling and

local I)lastie flow. Repeated cycles of lempera-

lure ,:hange associated with sl arting, accelerating,

decel waling, and stopping cause repeated work-

ing (,f the material and cracks. Cl'acks are tel

erabD, m_til they permit breakout of fragments.

Tim danger of engine destruction in flight tff a

sheet-met:d fragment passing through the tur-

l)ine is greater for the mnltistage th,tn for the

sinTl _-stage turbine engine, 1)ut comparatively lit-

lle eiperience has been g'dned wilh the nmlti-

stage lurl)ine engine. Tile effect of the hole left

l_y 11e fragment is usually of small importance.

Sere "ely warped liners cause almonnal tempera-

l llre lisiributions and may result in Imrned noz-

zle vanes and buckets. Probat>ly the most im-

port, nt contributory cause of sheet-metal fail-
ures is improper fuel flow. These failures are

accel,,rated l)y factors such as cltrbon deposits,

sever* transients, 'rod stress raisers caused by
fal)ri !al iOll methods.

Tvo major and two minor Air Force flight

accid.,nts during 1953 were altrit)uted to com-

bustc,r-colnponent failures. Because the mean

replacement time of coml)ustor components is
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considerably less than desired times to major

overhaul, scheduled tMd insl)ec(ions are neces-

sa W to extend engine life and improve reliability.

ADDITIONAL INFORMATION NEEDED

Ill order to incre'lse eombustor-component life

and engine reliabili(y, tul(lilional information is

nee(led, including the following:

1) A 1)etter understan(ling of the coml)lex

mechanism of sheet-metal failure 1)y thenmd cy-

clints wouhl 1)rovide a 1)asis for improved design

an(l selection of materials. Labora((irv lests on

simp]e pla(e elemen(s could be ex(ended to simu-

lale 1)rodnction coml)ustors in lheir operating
envirolHimnl. :_s ltD. interilll llleasltre_ the nlllll-

bet' of cycles /)f transient engine operalion that

will cause buckling, cracking, and eventual bre'd;-

out of fragmenls would be helpful.

(:2) Detailed combuslor gas and melal tem-

peratures are needed (o tzui(le (lie ]al)ora(ory t es(s

men(ioned in (1) and as a design criterion. The

performance of the fuel syslem shouhl be cor-

related with measured temperatures and coml)o-
nent life.

(3) Me(hods of reducing lhe effects of local-

ized heating shouhl l>e explored. F(Ir example,

segmented e<mstructi()n of lhe liner should mini-

mize (he in(eraction of adjoining elements and

thereby extend service life.
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CHAPTER VI

NOZZLE DIAPHRAGMS

By FRANCIS Z, CL_,()'SS

SUMMARY

Repeated ther_nal stre,ses are the most impor-

tant factor cmtsing damage to nozzle diaphragms.

These stresses arise fron_ nmvu_i/orm temper'a-

lure dlstHbutions and frotr_ c_nstraints which

prevent the nozzle dlaphrag_ fro_r_ expanding

and contraeti_,g freely duri_g heating and cool-

ing. Repetition of these stresses occurs dur4ng

starting, acceleration, a_ut stopping and eventu-

ally causes eraeTes along the edges of the nozzle

canes, at the traili_ W edge of the vane slot 5_ the

inruw chug, a_d in the weld joinb_g the inner ring

to the mounti_g flange. These erac_:s usually do

not p,'ogre,_s to complete failure of the unit.

Although crack's in nozzle diaphragrms are fre-

quent and add to the cost o/engine mainter, ance,

they rarely cause engine failure. Damage to

nozzle diaphragms is not a problem with respect
to reliability at the present time. This may be

due to frequent repairs and replacements in the

field a_d ducgng major overhauls for other types

of damage.
Crack's. because of their rate of propagation

and effect on engine operation, car_ be safely han-

dled by sehed_ded inspection. This involves

eo,tly repairs and replaeements.

Craeklng of nozzle diaphragms ca_ be reduced

in the follo_cir_g ways:

(1) Incorporate provision_ to allo_w the parts

to expand and contract freely.

(2) Distlibute the temperature more evenly

throughout the nozzle diaphragm and the attaeh-

i_l9 parts of the engine.
(3) U,_'e nmterlals with better resi._'ta_we to re-

peat_.d the_.mal stre.<_il_g.
(_) Eliminate vane slots in the inner _4ng or

s'ed_me their tet)de_ey to promote eracles.

L',,/dd deturioratlo_ o/ the nozzle diaphra_qm

occurs when_ through n_alfunetion of the corn-
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bus&o', severe overtemperature occurs. Overtem-

pera_ure may cause seetion.s of nozzle vanes to

be burned off. Nicks and dents i_ the expo,ed

surfaces are frequently caused by foreign objects..

INTRODUCTION

1),_nlage to nozzle diaphragms is found in the

maj(rity of jet engines received at overhaul de-

pots. Such damage must, be repaired before the

engines are returned to servic% and frequently

entire nozzle diaphragms must be replaced. This

chapter reviews damage to nozzle diaphragms and
ils effects on the reliability of turbojet engines.

T1 e sehenmtic sketch of a turbojet engine in

tlgure 1 shows the approxinmte operating tem-

pera ures of the various parts. The nozzle di-

aphr tgm is located between the combustion cham-
bers and the turbine wheel. Combustion of the

air-f,ml mixture takes place within tile combus-

tion chambers, and tile ]lot gases expand with

iner(,asing velocity througl_ the nozzle diaphragm.

IIert nozzle vanes direct (he gas stream against

tim l lades of the rola(ing turl)ine wheel whi(:h, in

( urn drives (he compressor.

TIe nozzle diaphragm is a stationary element

of tl e engine. It consists essentially of a num-

ber (.f airfoils, or vanes, held between two rings,

:_s slmwn in figure 2. The vanes are subjected
(o n(. mechanical stresses olh(,r (h'm those which

arise from the force of the g'_s stream. This
foi'c( can cause the vanes to defornl unless the

material has an adequate yield strength and

cree t, resistance at high temperatures. Lack of

stre_)gth or excessive temperatures produce light

bow, _ at tim trailing edges of the vanes.

'I'1 e temperature of nozzle vanes approaches

lh(, _ as (empernturc. Metal teml)eraiures as high

as 1! O0 ° F hnve l)een me:_sur(,d (re/. I), nlthou_h

)l()rBla]lv the nozzle vll.||(,s o|)Pl':i|e at IPIIII)III'_t-
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-Igniter -Nozzle dicphr89 m

Compressor-, ,-Burner ,-Turbine _Afterburner

' 'q250Temperoture, ' ' _,

' f600n 1700-' '-1500°F "-60 400 '

500-"

FICURE l.--Turbojet engine with afterhurm'r.

-E600 to 1800

tures several hundred degrees less than this (ref.

9). The inner and outer rings, which hold tile
nozzle vanes, operate at lower temperatures. In

some engines these rings fasten rigidly to other

parts of the engine, and the nozzle vanes, in turn,

are fastened rigidly to the rings. The thermal

expansion and contraction of the vanes then pro-
duce stresses in the inner and outer rings which

cause them to warp or crack.

Each time the engine is started, the nozzle

vanes are heated rapidly to their operating tem-

peratures. Lesser temperature changes occur

whenever the engine changes speed. During a

normal shutdown, the vanes are again subjected

to rapid cooling. If, for any reason, flameout

(or combustion blowout) occurs during flight,

the vanes are cooled rapidly by the inrush of cold

air. Rapid heqting then follows on reignition of

Guide vone--,

\

Outer ring-_,

FI(;UItE 2.--Nozzle di:q)hr:tgm.
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OUtlet

(a)

(a) Upstre:un edge_.

FI(:URE 3. Nozzle diaphra_nt _hmving cracks on edges of

vanus (,ref. _,t).

the [lalnt'. All these ('ondi|ions expose lhe n(izzle

vanes i_l repealed cycles of ihermal slressing

which can cause llleln 1o warl) _,Cl'a,.:],:, and ulli-

nlalely f,'a('ture. Figure ;I shows the cr'tcks pro-

(lucet[ at the edR'es of nozzle vanes by Ibis re-

l)e;tl(,d lherlna| slressing. The vanes in the

nfi(ldh, of lhe conlbustol.' outlels, where the teln-

l)erllllll'P iS ]l(lllesi_ sit(),,'+ lllOre cracking than the

otht'r vanes. Fi,.z'ure 4- shows more delail of lh(,

cra,q_s develol)e(I, by lhernml stresses _l.fler a

numl)er of engilm cycles.

The lint ('omllusli(m vases to which ihe llOZZ]e

di:ll)hr:l,.Z,'l|t is (,Xl)Osed are t',,rrosive, l/esides be-

in_z oxidizing, lhe. gases s()melimes conlI_.in harnt-

ful ('lelllellls fl'()lll (he fuel, su('h ns h'ad and vana-
diunt. These elemenls qltaek lhe rimes and

i)en(,trale inl,_ tile nl:lltq'ial :lion g/lit grain botmd-

aries. The cracks so (levelolmd act as stress

l'aist'rs and promole failure from olher causes.

In l)ral'li('e, the ('m'rosion problem is avoided by

using nlaleri:tls of ade(luate oxidalion resislanee

and sl)e('ifying that .jt,t fltels (h) not contain l'u'ge

ammmts of harmful elemenls. Surface coatings

mi_zht be used for protection, trot lhey present

other l)roblems.

!:

,,¢f

Combustor-

(h) ])ownslrpam edges.

l:Icult,: 3. (?on('lud('(l. Nozzh' dial)hra_m sh()winp, cra('ks

on (,(tgps (Jf van*'s U't'f. _.1).

Sol d lmrlieles in the gas slre'un exert a s(:rub-

1)ing :ration a_:tinst lhe nozzle vanes. FA'osion of

the V:tlle Slll'f_ll'ps ('fill (l('(qlr i[lllpss ])roper lllale-

rials :ire used.

Leodrn j edge Tradhng edge

]?IGUR:; 4.--Tyl)ic'd cratks in nozzle-dial)hra_nl vane after

319 eych!s (re[. 9).
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Parli('les inipii_ging against nozzle vanes can

cause tlIenl to fail by impact. These particles

can lie foreign objects ingesied through the in-

take syslem, parts that shake loose during opera-

lion, or fragments of compressor bla(les or con>

bustor liners that break off. The damage to the

nozzle diaphraTm may be limited to nicks or

dents that (lo not seriously interfere with engine

operaiion. Occasion,ally, however, large objects

chip off sections of (he vanes and these, in turn,

can cause further damage to the turbine blades

and [o the t'dlpipe and afterburner. This prob-

lem is discussed in chapter III.

In short, Ihe design and materials used in noz-

zle diaphragms should provide adequate resist-
alice to

(1) Aerodynamic h)ads

(% Thermal stresses
(3) Corrosion

(4) Erosion

(5) Impact

The Imrposes of this lml)er are to review the

following :

(1) The importance of nozzle-diaphragnt dam-

•_ge to the reliability of turbojet engines

(2) The types of damage that occur in nozzle

diapllragms

(3) The mechanisms of damage to nozzle di-

at)hragnls and the faei()rs of en_ine operation

that cause dam'_e

(4) The ways in whiHl nozzle dial)brahms

might be made more relial)le

(5) The areas in whidl additional inform.t-
tion is needed

To accomplish these purposes, opera(ing rec-

or(ls on turbojet engines and literature pertinent

to the prol)lems have been examined. This in-

formation has been analyze<l in the lit_ht of re-

s_'avdt (m (url)ojet engines.

FAILURE STATISTICS

IMPORTANCE OF DAMAGE TO NOZZLE DIAPHRAGMS

The importance of damage (o nozzle di-

aphragms can be examined from two poinls of
view :

(1) Its effect on engine operation, such as re-

duced thrust or a flight accident,

(2) Its effect on engine maintenance

5.24962 61 7
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Ahh()ugh nozzle diaphragms require frequent
repair or replacement, failure of nozzle dia-

l)hragms is not an important factor causing flight

acci(lenls in turbojets at the present time. This

f:mt is shown by a study of 205 U.S. Air Force

jet accidents during 1953 in which failure or mal-

function of l]le engine or ils accessories was |lie

l)t'invlry cause of the accident (ref. 3). In two

cases, (>verleml)er,tture had damaged the hot sec-

lion of the engine, including Ihe nozzle dia-

1)hragm, "rod caused "t major accident. In an-

()(her case, foreign ol)jeets had dam'tged the

nozz|e dial)hragm and (lie plane threw three

(urt)ine l/uckets, causing a minor accident. In

these accidents, the n(izzle dial)hrao-m was only
one of the items affected rather than the cause
of the ae(,iden(.

None of (he records studied rel)or(ed any loss
(if thrust from minor damage to nozzle dia-

phr'l_ms, l)istor(ion of (he vanes would ('han_e

(lie th)w characteristics and, if severe enough, re-
quire changes in the exhaust-nozzle area to main-

('tin opera(in V conditions. Excessive bowing of

(he v'tnes could affect engine 1)erfonnance
(ref. 4).

()rdinarily, damaged nozzle diaphr,l_ms are
tel)aired or replaced in the tield. When lmse

t':i<'ililies are inadequate, turliojet engines may

1)e sent (o overh'tul depots for (his work. The

open bars in ligure 5 show the l)ercenlaves of

several tylies of entwine (hat were sent to over-

h'ml depots because of damaged nozzle di,t-

l)hragms. For examph,, of lhe (_ (; engines re-

ceived at the ovelqrtul depots, 3 l)ercent were

sent (here l)ec'mse of damage to the nozzle (lia-
l)hv'l_gm. This figure is h)w for most other en-

gines, but several engines, su<'h as (he C-7 and

B-3, show mut,h lti_]ler percentages of ovetqmuls

l)eeause of damaged n()zzle diaphragms.

l)esl)i(e the rel)ai)'s made in the tield,'/ l'u'_e
mnnl)er of nozzle dial)hragms are found dani-

aged durin_ inspection at the overhaul depots
in engines sent there for other reasons. This is

sh()wn l)y the ('ross-halehed l)ars in ilgure 5. In

the (' (; engines, for examl)le , 92 percent of all

(he e))gines sent (o ()verhaul h',d d'unag'e(1 nozzle

(lial)hragn)s. (This value inehides the 3 percent

sen((() overhaul t)ecause of damaged nozzle dia-

l)hra_ms.)
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l)amage to the nozzle diaphragms does not

pose a problem of engine reliability because the

damage l)r-gre_ses so slowly that it can be re-

paired I)eforc a failure occurs. The necess'trv

relmirs or replacements nmy be made in the tiehl

or durin_z overhauls for other types of damage.

As thes(, other types of damage are reduced or

elimi.ated, (htma_ze to nozzle diaphra_zms may
I)ee(mm a mm'e impol'l:mi pr(4)'Iem 1o engine

i'elial)ilily.
OPERATING RECORDS

The re:tuner and fre(tuelu' )' Of damage to noz-

zh, diaphr:_gms ('an 1)e ]ear.ed from a slu(ly of

.l)erati._z re_'ords on turbojet eugines. Aircraft

engine l)isnsseml4v hmpe('tiol_ Reports (l)IlCs)
were m'ule availahle 1() lhe NA('A t() furnish

ibis data. These reports were prep:_re(1 l)y the

ov(rhaul depots of the Air Research and I)evel-

opInent (%mm:,nd, U.S. Air Force, an(1 each

re I oft toni'tins the findings on an engine at lhe
tine of overhaul. The limitatio.s of the I)IR's

in furnishing reliability dat_ are discussed in

('hi pler II.

TYPES AND FREQUENCY OF DAMAGE TO NOZZLE
DIAPHRAGMS

'_'he sketch in figure 6 shows the types of dam-

ag_ most common to nozzle diaphragms. The

fre luency with which they oc('ur during opera-

ti. t is show. in tiguve 7 for lhe raft(ms engines
s! udied.

"]']le lllOS|, (!OllllllOlI lype of (l'mm_Ze was ('rack-

ing of the nozzle v'_nes. Thus, for end, the (?-(;,

fully _o• J_ l)e_eent of the .ngines (_verhauled (or

every (mgin(, in whbh any (lamng_, t. the nozzle
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Vane with trailing
edge bowed-,

Vane with segment ',

,

 iii
/ ith

along edge, _-7 ', -
usually most _, _ L Crack m inner ring

severe at ^ _ -runnmg aft from
t,u,,,,,y euye _ vane slot

L

LCrack in weld joining

inner ring to mounting

flange

Plan view of hollow vane

"ballooned" from original
contour

FIGCRE G.--Types of dflln/Ige most (!(1111111Oll [o nozzle

di't l)hr:lgn_s.

diaphragm was found) had one or more cracked

vanes. The cracks started most often from the

trailingedges of the vanes. Two other common

types of cracks were circumferential cracks in

the weld joil,in_ the inner ring to lhe mounting

flange and axial cracks in the i,mer ring running
aft from the vane slots. In several engines,

the wehl joining the timer ring to the mounting

flanEe was cracked the full 3(;0 ° . Cracks in the
inner ring running aft of the vane slots fre-

,luent ly In',)_rressed inl o the mmmt in_ flange. The

presence of any of these types of era(q{ al)par-

ently did not interfere with the operalion of the

en_hw. The dalna_ze to m_zzle diaphragms in

en_rines merhauled for other reasons was just
as severe as that f(mnd when damage to nozzle

diaphragms was the lwimary cause fo," overhaul.

The other type of damage fo]md most fre-

quently in nozzle diaphragms was nicks and
dents in the vanes. This type of damage was

presen G for example, in 57 percent of the (? 6

engines overhauled.

Types of damage observed less frequently in-

,:lude the following:

(1) Melal deposils on surfaces; surfaces
"sandblasted"

(_) Nozzle vanes hent, torn, chipped, warped,

distorted, "balloom, d," or bm'nt to varyin_ de-

grees of severity
(3) hmer and/or outer ring cracked or warlwd

(4) Aft edge of inner ring, mounting flange,

or Oil|or rill_ WOrll or grooved

A further breakdown of damage statistics for

the C-7 engine is presented in tigure 8, which

breaks down the data shown in figure 7 into
50-hour intervals for the first 700 hours of op-

eration. Beyond this time, there were not enough

engines for a wdid analysis.

The frequency of overhaul is shown in figure

8(a). The frequency was highest during the
50-hour interval from 150 to 0.9.00 hours, and

al)out 1'2 percent of the engines were overhauled

during this period. About one-third of the en-

gines had been overhauled at the end of 200

hours of operalion.

One-half of the engines removed during the

first 50 hours of operation had some damage to

the nozzle diaphragms (fig. 8(b)). This was true

despite the fact that none of these engines were

overhauled prim:trily because of this damage.

The number of engines removed with some dam-

age to the nozzle diaphragms increased rapidly
with the time of operation, until practically all
those removed after 0.900hours had some damage

to the nozzle diaphragms. A few engines over-

htmled after £00 hours' operation had no nozzle-

diaphragm damage recorded, 1)robaldy because of
tield replacements that were not reported in the
DIR's. The conclusions that may be drawn from

lhis tigure are ilmt practically all nozzle dia-

i)hragms will be damaged to some extent "tfter
200 hours of ol>eration, lint lhat lhis damage will

;zenerally not seriously interfere with conlimwd

,q)eralion of lhe engine.
.Ks shown in figure 8(c), the edges of the noz-

zle vanes were cracked in 05 percent of the en-

gines removed during the tirst 50 hom_ of oper-
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Engines wdh-

I Damage to nozzle diaphragms

[_ Crack(s) in nozzle vanes

E] Crack(s) in weld joining inner ring
to mounting flange

D Axial cracks in inner ring running
aft from vanesNicks and dents in vanes

Other damage to nozzle diaphragms

Fldl'lHq 7.-- ]"rt'qllt'lll'y of occurr(,ncc of various types of dalnage Io m)zz[o (tial)hr:tglns.

Aug., Sept.., ()at.., 195 :I.)

36
34

30

[4

I

B-9 B-IO
Bomber Fighter

71 161
285 301
48 88

(l)a_a ohl:dned from l)ll{'s,

alton. After 200 hours, vanes in i)raclieally all

lhe engines were cracked. ('racking was the

most frequent, lype of damage to nozzle dia-

phraKms , bein_ reported in SS percent of all en-

gines of this lype overhauled. The curve roughly

parallels llmt shown in lira 1)revious tlgure for
all types of dalllHKe.

Nicks and denis were present in tile nozzle

V;llleS Of 50 per(tell| (if tile engines removed dur-

in_ lhe lirst 5tl hours of operation, as shown in

li-'ure S(d}. The rate leveled off at about 85

percent of lilt' engines overhauled after 200 hours

of operation. Fiehl rel/airs probal}ly account for

this value's not l'eaehin_ 100 percent for long
opera! in K times.

The weld joinin_ the inner ring to the mount-
in K tl'm@e did not crack until the second 50-hour

inlerval of operation (liK. S(e)). The fl_queney

of wahl cracking increased with time, although

:It a lower rate than th'tt of nozzle-vane erqekin g

(fig. _q(e)), and leveled off ql about 90 percent

afler 500 hours. Again, tleld rephwenmnts not

reporled on the DIR's are probably responsible

for 111_ absence of this type of damage in a few

engim s m'erh:mled after long times of operation ;

if the_,e replacements were reported, the frequency

of thi, type of damage might reach 100 percent.

As for the effect of this type of damage, lhe

rec,w(l_ show lh'tt the weld in several engines

was cracked the full 360 ° wilhout eausin_r an

aceide II or being the primary eause of overh'ml-

in_ ll!e engine.

(_l"a,'ks I'mmin K aft, of tile vane slots develoI)ed
in the inner rin K at a still slower rate. No erael(s

of lhi_, lype appeared until lhe third 50-hour in-

terv'd of ol)eralion, as shown in fiKure 8(f). The

frequency increased continuously lo a value of 30

peroetTt after 700 hours of operation.

An) changes in design or materials to reduce

the r:_te of one type of erackin_ must not, of

course, unduly '/eeelerale one of lhe other types
of cra :kin_,
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(a) Fre(luency of overh.ml.

(b) Frequency of damage to nozzle diaphr'tgms.

(c) Frequency of cr'_cks in nozzle winos.
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FACTORS OF OPERATION CAUSING DAMAGE TO
NOZZLE DIAPHRAGMS

TEMPERATURE CONDITIONS

An understanding of the crackino" of nozzle
(liat)hragms must begin with a knowledge of the
teml)eralure conditions in the engine. In a study

of temt)eratm'es of nozzle vanes in a J47 engine

(ref. 2), the telnl)eralllres of nozzle vanes varied

with their I)osition relative to the eombustor out-

let. Vanes directly aft of the highest tempera-

lure zone of the eomlmslor awe lmtural]y hotter

lhan those l)ehind the division points between
coml)ustors. Gas temperature a(?ross the outlet

(,f the lransition liner of one condmstor varied

as shown in figure 9. This figure shows tim ten>

perature dislribution during operation at an en-

gine speed of 7950 rpln and a tailpipe gas tem-

1)erahwe of 1_(;() ° F (rated conditions for the J47
engine). The. lines of eonst'mt lemperature are

alq)roximaled by ihe dashed lines in tim Ul)l,er

imrl ()f lhe tigm'e. The ('('llI('l' ()f l]|t' 190IV F

isothermal is displaced radially outward about

20 percent from the cenler of the transition liner,
apparent]y 1)ec'tuse of the deflection of the hot
vases by the in('lilmd surf:we ()f lhe lransitiml

liner just ahead of the point at whi('ll lenlpera-

|Ill'PN W(q'P III('IlSllI'Pd. Tile zone ()f hiahesI tent-

])(q'llltll'P iS (lisl)la('ecl t()l]le rig'lit side ,,f (].'
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Gas Reor elevotion of combusfor- '
2000_temp eroture, outlet station I

o F
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1600 ......
8

,4o% _ _ ,o ,.s12o 2s 3o 3_
Distance of probe from inner wall of

combustor outlet, in.

];II',I'RI.: _.}.-- (_',1:, l(Hl|p{,rlHllro aCl'Os_, eomiHlstor of ,If7

un_it.' (rt,f. 2).

--i I

I

<',mUmst.r <mlh, t. The hig'hesi gas teml)erature
lllt't(Slll'l'd X'_'ttS 1Dti} ° F, altd the ]owest was

14{;0° I;.

'l'emperalures are _Ziw,n in ti_ure 10 for ll)
.'ul.ia,em n,,zzle vam,s covering this comtmstor
outh, t ttmh, r lhe same engine conditions. ]'em-
I)tq'tlillt'ps Wel'e llletlStll'ed Ol1 i]|t_ COllgtlve sides of

the vanes, one-half of lhe dislam'e between the

inlml' al|d OllteI" l'ill_ZS ttltd foul'-tellths of the

dislat,!e fl'oln llle leadin_z to the trailing ed_zes
(i.e., at midsl)an and 411 l>ercent chord). The
pattern shown by this ligure is simihtr to that
shown in fi_ut'e 9 for tim gas teml)eratm'e. Noz-

zle vanes hehind the division points between
combustors are about 400 ° F cooler than vanes

directh" aft of the hitzhesl temperature zone of
the eombustor. Teml)eratlll'es ranged front 1570 °
F on vane 7 to 1130 ° F on vane 2.

The Wmperature variation in a single nozzle
vane is shown in figure 11. Temperatures were
measured at the points marked at the midspan
of the vanes (under the same engine conditions

as the data of tigs. 9 and 10). The important
ft'at,I,'e slmxvn in this lig',,rt, is lhe large differ-

LI-
o

14CD <
(D

E

12C0
o

I

5 6 7 8 9 10
Nozzle vone

]"[GUR_ 10.--Met.d temlicl'atqros of nozzle vane+ across

combustor of J-17 engine (r(,f. 2).

ence +n temperature between the edges and the
body of l]m vane. This difference was ascril)ed
to llm i)assage of small .tmounts of coolint_ air

through the hollow vanes used in the J47 engine.
The (+iserei)ancy l)etween the midehord lempera-
lure +hown in this li_'ure and 1he 4l)-lmr('enl-

cll<)t'(i teml)erature shmvn in tigm'e 1(t for blade

Leading Pressure s.de
_dge

17C0

<

oLL _ .

 -,5co k
'_ \ _ Pressure side i

\ \ I ',

s0c,  i 1
0 25 50 75 100

Percent chord

I"£GUR:: 11.- Temperature variation across chord of nozzle

wine in J47 engine (rcf. 2).
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(; is due to experimental changes made between
the two tests.

Tile variation of vane temperature with lime

(hn'in_ rai)id acceleration from idle to full power

(3000 to 7950 rpm) is shown in tig'ure l°(a).
Tem|)eratuves were measured halfway belween the

imwr and omev rings at the positions marked in

_he figure. Note that lhe trailing edge (position

4) resp, mdt,d most r:_l)idly to ehan_es in _zas tent-

]_eratm'c and reached a peak of almosl lS0() c F

during the acceleration 1)eviod. Note also the

l:tr,_e Wml)erature dr- l) fr()ln the trailing edge

[O the :}_l-ctloi'(l 1)oint (position 3) only 0.(;50

hwh fl'mn 1)osilion 4. The mnXilmnll dro|) is
about 750 ° F at ah()ut 12 seconds after the start

of a('celeration, whi('h was |he time when the

trailing edge reached its 1)eak teml)era_ure.

Nozzle-vane tem|)er:uuves (hn'in_ a n(n'mal and

a hot start are shown in fi_zures 12(h) and ((').

A_ain, there is a large leml)ev:dure dvo l) t'rom

the edges to the 1)()dy of the vane.

THERMAL STRESSES

When a b()dy is heated or cooled nommiformly,

as nozzle diaI)hragms are, the various sections

lend to exp:md or ,omracl by different m)mm_ts.

In or(ler Io (,nalJe such a body to remain con-

tim.ms, :L system .f thermal strains aml associ-

:deal stresses is set u l) within the body. These

thermal stresses are thought to be tit(, most im-

l)ortant cause of Cl'll.OkS ill the n(_zzle diaphragms

of jet engines. A 7eneral dis('ussi,n of thermal

slress(,s is given in reference 5.

Tim thermal stresses in a 1)<)dv del)end ,l)On

(1) The teml)evature distrilmiion within the

h<)dy

(2) The prol)erties of the material

(3) The degree of conslraint iml)osed upon the

lel'ee exl)anuion aml contraction of the body

'l'])e forces constrainin_z a ])ody from free ex-

l):msi,m and (,ontracti()n may lw imposed exter-

nally, as when a 1)av is heated and cooled with
ils ends held fixed. Or the constraining forces

Inav be iml),se(l intemml]y lw a(l.i:u'ent sections

of the body, as when the temperature is ('hanged

nommiformly. In this ease, the degree <)f c()n-

straim depends on tl_e size and shape of dm body.

The telnl)erature distri|ndion in the body may

1)e unchanging with time (steady-state), as when

different parts .f the body ave hehl at ('(instant

tern l)er:fl ures. Altevn;tt i rely, ! he t eml)evat u re dis-

200O

Trailing edge-, Position

160C

g

E
cZ)

80(

4O(

I
r,Tailpipe gas

edge -,,

/

Speed

8000

Throttle _J 4000 _[ I00

I0 15 20 25 -- _00 '_ c
Time after start of acceleration, sec

(a) Acc(,h,ratioll from idle (3,000 rl)ln ) 1o l','tl('(t sl)l'u([ (7,1,)50 rl)ln).

],h(;l:Rt.: 12.--Transi(,nt tcml)eralures (t'('f. 2).
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tribntion lnay be transient, or changing with

time. So hmg as the temperature distributions

are equal, the tllermal stresses are equal for both
steady-state and transient distributions. IIow-

ever, the transient leml)eratures i)roduced mo-

mentarily l)y su(lden heating or cooling ("ther-

mal slmck") generally 1)roduce more severe tem-

perature distributions from the standpoint of

thernvfl stresses than do steady-st,tie distrilmlions.

Tlms, much higher thermal stresses may be pro-

duced during tile therm'd slmek of a body be-

tween two temi)eratures Ihan would exist at a

steady-state condition. A second factor that may
increase the damaging effect of thermal shock is

the embrilllemcn( of many engineering mate-

rials by (he ral)id applicalion of slress. These

materials m'D_ not be able to withstan(l a thermal-

shock stress that could be readily absorbed

if "tpl)lied sh)wly so (hal the malerials retained

their ductility.

When failure occurs after a repeated number

of cycles of thermal stressing, the process ()f fail-

ure is known as "thermal fatigue." This proc-

ess is more comi)lex than when failure occurs on

the first cycle. It includes gradual changes in

the material, such as those which occur during

ordinary mechanic,d fatigue at constant teml)era-

ture, as well as those which occur during expo-

sure at high temperatures. Creep or stress-

relaxation and microstruetnral changes may be

iml)orlant. Mechanical properties and the stress-

strain relations may be different at the start of

each cycle. The repeated straining in opposite

directions during each half of lhe cycle is said

eventuallv to exhaust the ductility of the mate-

riM, and tim body cracks.

Cracks caused by thermal fatigue have a brit-

tle al)pearanee wilh little or no apparent plastic

yielding al)out the point of fracture. In this

respect, they are similar to the fractures caused

by or(linary mechanie,d fatigue.

Because of the similarity of ilm cracks in noz-

zle diaphragms to those caused by thermal fa-

tigue , 'rod in tim absence of other conditions that

lnight cause fatigue damage, thermal stresses are

felt to 1)e the most important factor causing

cracks in nozzle vanes and rin_s during engine

operation. ]Iigh thermal stresses can also cause

warl)in _' ()r distortion of ll)e rings. The daln

shown in tigures 10, 11, and 12 show temperatm'e
con(liIions lhat cause high thernml stresses.

The vanes near the cen(er of the confl)ustor are

holler than those at the edges, as shown in tigure
10. Exl)erience shows that the inner and outer

rings operale 'it temperatures below those of the

vanes. The difference in the thermal expansion
of lhe vanes, as well as tile difference between

the vanes and the rings, causes stresses and dis-

(orlions in the rings "rod vanes when both rings
are allaclmd to tlm vanes. There is also a differ-

ence in tim expansion of the inner ring and the

mourning flange to which it is wehled and which,

in turn, faslens to the engine.

lTnder sieady-state conditions, the lea(lin K an(1

(railing edges are ]miter th'm tlm body of a vane,

as illuslrated in figure 11. Thermal stresses and

plastic flow can occur along the leading and trail-

ing edges. On cooling, the stresses arc reversed,

trod plastic flow may occur in the reverse direc-

tion. Repeated starts and stops may ultimately

cause the leading and trailing edges to crack.

Tim temperature gradients between the edges

of tim v'mes and the body arc more severe dur-

in_£ slarting (ti_'s. 12(1)) "rod (c)), a('releralin_

(fig. 12(a)), and stopping than during steady-

stale conditions (fig. 11). Tlms, lhermal stresses

are greater during these times. Hot starts can

cause damage not only by the greater thermal

stresses that accompany the higher rates of tem-

perature change, but also by changes in material

struclure at the higher temperatures.

FOREIGN OBJECTS

Foreign ol)jec(s are next in iml)orta.nce (o ther-

mal stresses ill damaging nozzle diaphragms. As

these objects pass through the engine, they nick

and dent the exposed surfaces in their paths.

Nozzle vanes are frequent victims, and the sur-

faces of the inner and outer rings are sometimes
nicked and dented as well. Gravel or stones tlmt

have been pulverized in the compressor may give

a sandblasted appearance to the nozzle dia-

phragm. Large objects may cause deep gouges

or may chip or tear sections of the vanes, but

the damage is generally not so severe as to limit

lhe ()l)el'ali()n ()f lhe engine. ('hal)t(,r III (lis-

('uss('s l])eir ell'('('( ()n en_'ine reliability.

5:',4!Ni2 G1 ",
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A nmnber of l)IR's report instances where

nozzle vanes have been "l,alh)<med," partially

melted, or otherwise burnt to varying degrees of

severity because of gas temperatures that ex-

ceeded those n<n'mallv permitWd. Overten/pera-

tm'e may l>e caused by a hot slat'l, personnel

error, insirumem ]hal function, or <,ompressor

stall. Instrument malfunction and its effects on

engine reliability are discussed in clmpler X.

IMPROVING RELIABILITY

The factm's that damage nozzle dialflwagms

can be grouped into those that may be consid-

ered part of tile normal conditions in which an

engine nmst ol>erate and those thqt nmy be con-

sidered accidental. The accidental fa(gors in-

elude foreign objects and over|enq)erature. Tile

most direcl approach in dealing with these fac-

ira's would be to eliminate lhem entirely, 'is by

installing prolective screens and c(m|rol instru-

meres and ensuring their l)roper performance.

These methods Ill'(' discussed separately in other

parts of this rel)ol't, l-hill these ('han_res have

heen made, the designer must allow for the a<:-

cidenlal fm'tol'S by designing sufficiently rigid

strm'lures or I)v using malerials thqt are more

resistant t() impact and Io overlenll)eralure. This
nmsl 1)e lml'mced with the _i'eater <'osl. more

ditllcull fabri<'llliml, and hi_zher strategic-element

COil[ell[ SllCh ([eSigllS and lnat(n'ia]s IllilV have.

The lwedomin:mt fa('im' illllOll K those qssot'i-

ned wi|h nm'nml conditions in the engine is

'hermal faligue. This has been shown to cause

:'ra,'ks ah)ng the edges of the vanes, ,'racks alon-"

{he wehl i-inin_z the inm, v rin_z t. the mounting

IlanKe, and m';wks ill tilt' imwr rin K runnin,J afI

['ronl t|n' vane slols. The soluli,m to /his l)rob -

Iem is lo (leveltq> desions and materials that will

(1) lnc(n'l)()rate i)rmisi.ns t,) alhm" the l/art.q

_'. exlmnd and c(mlract freely

(2) 1)istrilmte lhe leml)eralure more evenly

hr(mffhoul lit(' nozzle dial)hrao'm and tilt, at-

;lchin K |)arts of ill(' engine

(3) flare bettm' resistam'e to rel)eated thernml

q ressu n K

(-I) Elhninate vane sic)Is in the inner ring (,r

reduce their effect itl ]wonm! ing" cva('ks.
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l:lvil thernud cracking is eliminated, sched-

uled inspection of nozzle dial>hragms is required

| O 111{Iintqill <)pel'ational reliqbilit y.

RELIEF OF CONSTRAINT

In :he early nozzle dilq)hl'agms, the V;tlleS were

welded at both ends (,nto lhick rings, as shown

in tiguI'e 13(a). Since the outer ring does not

heat its much as tile rest of tile unit, it con-

slt'ail_s tile expansion of lhe vanes (lurinK heat-

in K. This constraint causes COml)ressive strains

(0) (b)

(:t) _am_s welded to rings (I)) Vanes wel<h'd at one

at I)ot h ends. end only,

1"I ;urn,; 13. St'clions of nozzle dial>hragm (ref. 5).

ill lilt' vanes when ho|, and, if these strains are

l)lastc, residual tensile stresses are introduced

when lhe vanes are co(de(1. Successive re.l)eti-

lion m'oduces thei'nml-f'lti_ue cracks.

A later design th'lt eliminates lhe end con-

slraint, of lhe nozzle vanes is shown in figure

13(b . hi this design, the vanes are retained by

wel(l:ng to lhe maer rin K and are floated in slo|s

,'ul i lto |he inner rinff. Tile v;mes can expand

and ,'()nit:let freely along their h, ngth, wilh the

inneI rink servinff only to position them. Other

alter retires to allow free floaling arc possible.

'l'h_ iulvant'tges ()f lhe lloqtin_r design are seen

1)y ('( ml)aring ol)erating re('m'ds fin" different en-

,.zinc:. Figure l I(a) shows lhe design in :m early

eno'i] e. Note llml the vnnes nre wehled at both

ends to the ilmer 'rod outer rings ;Ind lhat the

morn(inK tlanKe is wehh'd lo Ill(' hmer rin_

Fi_u:'e 1411)) sll()ws lhc free-thin(inK design of

:t lai,,r enffine. 'File Vall('S aI'C' a]lernately wehh, d

io eibher the inner or outer rin_s, ex<'ell! for a

fe, w canes that are wehled at bot]l ends. A bel-

lows between tile imlt'r ring and lhe in(ranting

tlan_:e reduces ('OllS{l'ailllS flll'tlleF. The records
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(:|) ]:roln i,ar[y end|n(,.

]:I(;VRE 14. Nozzle dia])hra_:n_.

:it the slots where the vanes were welded or were

free.

Note that the free-floating design eliminales

only the end constraint on the vanes; it does not
elimin'tte those s|resses in the vanes that arise

front unequal leml)eratures in the differenl see-

lions of the vanes. I)uring heating or cooling,

ihe sm'faees of the vanes change temperatore

more rapidly than the interior. Also, the thin

edges change (em|)eralure more rapidly (h'm the
more m,ssi\'e mid('hord sections. These differ-

en('es in temperature can produce stresses well

:d)ove the elastic limi! of the material, so that

plastic flow must occur (ref. 6). Again, repeti-

tion eventually causes cracks, wari)age , and
failure.

One way that might be investigated for re-

ducing the const raint of adjacent sections of wines

on each other would be to segment the blade, as

shown in figure 15. In this way, the edges of
the vanes could slide i)ast the ('enler section

during expansion and ('onlraction and relieve the

lhermal stresses that wouhl otherwise be pro-

duced. A segmelded blade would not have the

iiiilii!!iiiiiiiiiiiiiiiiiiiiiii!iiiiiiiliiiiiili

]"IGUI_,E |5, [']X_llll])l( _ of \'aue s('Kmentation.
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strength of an integral one, and care wouhl be

needed |o avoid introdncing other 1)roblenls froln

aerodynanfic lo,uling. Thus, "/ segmented vane

miKht lose the benefit of the camber in obtaining

lateral stiffness and lnight bow more easily. The
use of woven s('reen material covered with a

thin skin mi_.ht also reduce the thermal stresses

set u I) by the constraint of adjacent sections.

Hollow nozzle vanes might have better thermal-

shock resistance than solid vanes (ref. 5),

perlmliS because of a lower thermal inertia (or

I'esistqm.e to teml)eralm'e changes) and :t more

even distribution of temlIerature. ITollow vanes

would also h'tve less weight and use less strategic
materi'd than solid vanes.

Segmentation of the outer ring has also been

used to reduce therm'd stresses there. Using a

I)ellows arrangement belween the immr l'in_ and

the mounting flange, as has 1)een used on one

engine, shouhl provide some relief between the

expanding and contratqin_ (li'_phr'_gm "rod the

rigid engine casin_.

OBTAINING MORE EVEN TE'MPEIIATURE DISTRIBUTIONS

Me'ms shouhl be, sludied for obtaining more
even temperature distrilmtions in order to reduce

thermal stresses, particuhtrly during the transient
condilions where tile greatest differences in ten>

Imrature are obtained within the body. Two
gener'd "q)proaches appear possible:

(1) Ileduce the rate of healing or cooling to

allow more time for the teml)erature distribution

to even out or approach steady-state conditions
(2) Increase the rate of heat transfer within

the body to allow the temperature distrilmtion to

even out or approa('h steady-state conditions more

rapidly

Coatings with high refleetivity suppress radi-

ant heating so that coated parts heat more slowly
than uncoated ones. Tiffs allows more time for

tile heat, to be conducted from the surfaces to

the interior of the part t)efore the surface layer

i'e'whes its hi_hest temperature. Transient tem-

perature gradients are thus reduced, and lhis

reduction, in lurn, lowers lhe thermal stresses

during radiant beating. If coalings can be main-

rained wilh high reflectivity, their use on nozzle

v'mes will merit t'urtl,_r study.

Surface coatings e'in also insulate against the

tnmsfer of Ileal frmn lhe _ases to the metal. In-

sulat on may be an important function of a sur-

face 2oaring when the imposed thermal shock is

of short duration (ref. 5).

Vane segmentation provides gaps that partially
insulate the segments from each other. As a re-

suit, temi)erature distributions within each seg-
lnent are liiore Ullifol'nl.

Im:reasing the lhermal conductivity of the ma-

teritf c'mses heat to be eon(lucted nmre rapidly

from the surfat:e to the interior of the body. This

would 'Ilso reduce tim teml>erature gradients and

therraal stresses. Copper, for example_ has a

thermal conductivity about 15 times as great as

high-alloy steels, so that cores of copper might
lie used to reduce teml)erature differences in noz-
zle v:lnes.

MATERIAL SELECTION

17sing materials with great er resistance It) ther-

mal fatigue is an obvious nleans of improvin_

the r.qiability of nozzle diaphragms. ]_Iany tests

lmve been made to measure this proi)erly of a

mater'ial.

One of tile first studies on the effects of ther-

mal shock on gas-turbine materials was published
in 1938 in the German literature (ref. 7) and is

described in an English survey by Bentele and

Lowt!fian (ref. 6). V_'edge-slmped speciinens of
nine different alloys were used to simulate the

shal)/ of turbine blades with sharp edges. The

test tyele consisted of heating the specimens in

an air-gas flame for 1 mimae, followed by cool-
ing il still air for 3 minutes. Tests were con-

ductel with two flame-temperature ranges, 650 °

to 70,1 ° C and 850 ° to 900 ° C. Specimens failed

after a number of cycles either by severe distor-

tion .,f the edge or by the formation of cracks.
The lests demonstrated lhat

(1) Excessive distortion, as well as cr'tcking,
is an important criterion of serviceability.

(2) The numl)er of cycles to failure falls off

very :api(tly as the flame temperature is increased.

(3) The relative Inerit of different metals can

ehan_e with the test conditions; one metal may
be be ter than another for one set of test con-

ditto1 s and be inferior under other conditions.

(4) There is no clear rehltion between the re-

sistance to thermal shock and the material prop-

erties such as tensile or t',reep-rupture strength.

In :onnection with items (3) and (4), Manson
lms &_rived indices that relate the thermal-shock
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resistance of brittle materials to their material

properties (ref. 5). This index predicts that one

material may be superior to a second material

under one eonditi(m of quenching, and the order

may be reversed under slightly different condi-

tions. Experimental results for brittle materials
have confirmed this relation. For duclile mate-

rials, the interactions of the met,dlurgical v,u'i-

ables are more complex, and no index for lhernial

fatigue has as yet been derived. Tests of ductile

materials, suc]l as those eiled, also show a change
in the relative order of merit for difl'erent lest

conditions. Therefore, in tests for rating male-

rials for a specific use, the conditions niust eh)sely

ap1)roach those of the intended apl)licalion.
()iherwise, the results may lie niisleading.

_Vhitnian, IIall, and Yaker conducted tests to

delerniine the resistance of six cast high-tenlpera-

ture alloys to cracking caused by tl_ernial shock

(ref. 8). The alh)ys studied, lisie(1 in the order

of decreasing resistance, were S 81(;, S-590,

ItS 21, 42:2-19, XM0, and Stellite 6.

Specimens of these ,llhiys were cast in the
f(n'ni (if wedges. These wedges were heated to a

unif(_rln tenil)eraiure and then quenched 1)y a

sire'lni of water across the n.lrrow edge. When

the specimens were cool, tlley wel'e removed from

the quenching "lpI)aratus 'rod inspected. Faihtre

was defined as the presence of a crack that ex-
tended across tlie entire width of (lie quenched

edge.
No correlation was found between the thermal

properties (coefficients of expansion, thermal con-

duelivities, and specific he'tis) and the resistance
of the materials to tliermal cracking. The actual

variations in the thernlal properties of the six

alhi.vs were sniall, so that one of the results of

this study was to show that niaterials with sinii-

Jar thernial properties can llave widely different
resistances Io lhermal cracking. The authors

noted l/ siniilarity in the trends of notch impact

st renglh and resistance (o theriiial cl'aekillg> W]li(']l

indicales a 1)<lssil>le relation between these

l)r(ll>eri ies.
Variations (if therni:il-shock tesls in whicli

wedge- or trianguhu'-shaped specimens are heated

or cooled, or 1)oih, along one edge have been used

l)y niany investigators. At one industrial lal)o-

ralory, for exaullile _ the test involved repeated
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heating of the edge of a triangular-shaped sam-

ple in a burner thune followed by sudden cool-

ing of the edge t)y a blast of compressed air.
Faihu'e was considered to be reached when a

crack had traveled completely across the 1/_o-inch

edge of the specimen. The order of merit of the

allovs studied (unlmblished data) was as fol-
lOWS "

1) Cast IIS o_1

'2) Wrought S-816
3) "l,VrouKht L-605

(4) "_Vl'ollght S-590

(5) Cast X-t0

(6) Cast: S $16

(7) VVrought V :_(;

(S) Wroug'ht M o5t2

(9) Cast 1II:-10t9

(10) Wrought 1,Vaslmh)y

(11) Cast GMII o35

(12) (;ast (iuv alloy

Cast IIS-21 wMlstood more than 10 tithes as nialiv

('yc]es as casI) (lily alloy.
lit these tests, cast IIS-21 and X-40 were 1)oth

superior to cast S-Slt;, whereas lhey were 1)oih
inferior in lhe lests of referen('e 8. This again

eniphasizes that thernml-shock tests nnlst ch>sely

ap1)roxilnate lhe conditions of lipplication if tile)'
are to be used to rate uutierials. ;ks yet, resulls

on lllboraiory ihernial-shock tests have not been

successfully correhlled wilh service conditions.

While nnl_terial A UlaV be superior to uialerial

B in a htboratory test, the second niaierial may
In, belier in 'lctuill service.

"V%'i'Ollght S 816 was Slll)erior to cast S-Sit; in
the hist-ulentioned tesls. _Vhelher the wrought

condition is always belier than the cast condition

el! lilt "llloy is not l.:nown. Cobalt-base ,dloys

were superior 1o ni('lcel-l)llSe 'alloys in ])oth tile
('liSt alld Wl'(illghl (!ondiiions iu the (lat<_ cited,

lint again lids ilia}" iiot be true in general,

SLOTS

The COliClHltralioil of stresses at tile bases of

n()tches is well known 1o desiguers. Designers

couslanily ti T lo eliminate notches or to provide

geuermls rounding to lessen their effect. Axial

cracks in the inner rings of nozzle diaphragms

start at. the trailing edges of the wales, where the

slots that ,ire cut in the ring to receive the vanes
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con('entraie tile stresses fr()m the thernial expan-

sion and (:onlra(,li(m of the system. The greater

ri)undin/ i)f lhe slois at llie leading edges re-

(hll'es st l'es.'.; ('()ni'elltFal toll i ]lPl'e, all(t, ]len(;e_ er_tc],:s

do not ()ccur there. Flaring the bottom of the

vailes lo increase the ,'()unding would reduce vane

crackin_ a( the ira)ling edge, while de.-Jgns tliat
elinlinate (he sit)is w(nihl eliminate the stress

c()),('enlvation prol)lem as well.

OPERATING PRACTICES

Frequent insl)ecli.n "lnd repair seem necessary

(o avoid increases in nozzle-dial)hragni daniage

lieyond safe lilnits: however, ]tow often mahlie-
nance will be needed is dill)cult 1o know from

l[}le I)l'eSell[ (|Ill,;l, The mmlber of slaris and

stops, as well its lhe severity of operation, are

l)i'()l)al)ly niore important than the total time of

.lieralion. I)IR's, which ffive only the total tinle
[if ill)el'alien, indi('ate that edge cracking will be

present in pr:l('iically all cases where the nozzle

diaphragnis have ,qieraled 200 ]IOIII'S O1" nlore.

tither types (if ('nu'kin_ occur at slower tales.

F(irtunaiely, cracks in nozzle diaphragnis are

nil(importan) causes (if engine faihtres (/r air-
craft accidents. Their rate of propagation is

apl)arently slow, and their presence is not dam-

,_.,'t(riil('_. Present insllection and maintenance prac-

tices apl)ear adeiluate from this standpoint.

ADDITIONAL INFORMATION NEEDED FOR IM-
PROVEMENT OF OPERATIONAL RELIABILITY

From the slandpoint (if (,(is;, (huna/e to ni)zzle

(lial)hragms iN inll)i)rtan(. Because of this dam-

a_ze, .jet en/ines require frequent rel)airs and re-

placements. Addilional information is needed (o
extend the time between t)verhauls.

Much of (he inflwmation needed is concerned

with nieehanical designs to reduce or eliminate

thermal stresse_. Free-lh)alinlz vanes, ring seg-

ment:ilion, and belh)ws attachments can reduce

(he vonstrain( between different parts. Vane

se/nienl at ion, hollow vanes, composite vanes with

cores (if hi<,,,h thermal conductivity, and vanes

made of flexil)le materials nre possibilities for

reducin_ the ('onstraint between different set!-

lions of the same part. Fat:tots that concentrate

;hernial stresses ._houht lie eliminated in' their

effect reduced.

hi formation on surface voalings ihat maintain

high refleetivity and insuhtte a/ainst he'll eon-
ducti(m is needed.

Ft!n(lalnen(al research sh(iuhl be conducted im

therliial fatigue. Tesls that will establish tile
i'e]al ve nlerits of differenl nmteria]s under serv-

ice c)ndi(ions sh(ntld be deveh)ped, :is shiiuhl also
malerials with better resistan('e Ii) l]lermal fa-

li/u(, inipaet, and overtenlperature. I)esi/n l)a -

ram(,ters that rehtie Ill(, nulnl)er of cycles (if (her-

real fatigue before faihlre occurs with the

ffeolnetry, heat flow, and ninlerial l,l'()pel'lies

should lie established, l)rodu('ii()n speeifi('ations

should include conduct ing ._m'h iesls as are found

s:lii_fn(qliry on the v()nli)leted (*()ml)onen(s.

CONCLUDING REMARKS

ll(I)eate(1 (hernial slresses are (he nl.sl inll)or-

tan(. factor causin/damage t[)nozzle dialihragnls.

'l']le_e slresses arise fl'()lll l,)uunifi)rn_ (ellll)el'a-

lure distributions and fronl ct)llslraill(._ whi('h

])revpn( (he nozzle diaphrn/nl from expanding

and <'onir'l(!tin/ freely durin,/ healing :tnd cool-

in,_. Ih, l/etilion i)f these slresses din'in-' slartin_z.

aece erating, and stolipin_z eventually causes

('l'it('] S al(tll_ the e(l_zes of nozzle vanes, at (he

(rail n_Z ed/e (if lhe Valle slot ill llle inllel" ring,

and in the, wehl .iliinin_ (he inner ling'" I() (he

nloulliillff thmge. These cracks usually ,hi not

liro_ress ti) ('fin)))fete failure (if the unit.

Although cra(!l<s in ).)zzle dial)hra_nls are fre-

quent and "Idd (o the ('i)sl of eno'ine main(enan('e,

they rarely cause en_ine failure, l):nna;re to

nozz,e diaphra_nis is not a l)rill)lem wilh respect

(o rclial)ili(y. Cra('ks in (lit' nozzle vanes van lle

_afelv handled I)3, insl)e,'li()n :ll)iI reliair :it fre-

(luen{ interv'/ls.

lh 1lid delerioration (if lhe li()zzie (liai)hragnis

[)e('ll's whell_ throush inaiflliiOlioli (if the i!()iii-

llllst()i'_ ._evel'e t)vel'leiiiliel':illll'e ()(*(*ilFS. ()vel'-

lellil el'Itilll'e IllaV ('allSe se('li()llS (if nozzh, ValleS

l() 1), IJlli'lted till)'. Nicks all(l ill, Ills in llie ex-

1)(/se.t Sill'flii'PS life fl'eqllelll])" i':lllSe(l I)v t'()l'eiSli

<,l),ie, is.
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CHAPTER VI I

TURBINE BUCKETS

By G. 3I. AULT

SUMMARY

Air Force ,_crNcc rc,'ord._ i'ndicated that for

scccra2 modds of tDc jet engine turbine-bucket

replaeem('n& _o'e _,ery frefFtently ,_wces,sary be-

cau,_'c of bucket cra_klng or fracture. Bucket

f_wqurc occ,i._io,,dly oceur,_" in flight. In engines

with s/uglc-._.h_ye turbine,s', the fragments from
fr, wt,rcd buckets are often, ejected through the

di._'ch,ryc _oz._.k_ with no further dc_maye and
l/liD, los.,. ;x_ /Dru.,t. 2"hcre i.v a ft.@ associated

with /><rmltti,g Du<'l,'ct frcwt,rc in fl@ht, how-

,'r, r. as nftc.,'/¢d by lDc fact that in 1953, oi 20:7
. I;r l"or('c flhiht nceldcnL_' ,tiiribut(_d to )el-engine

#tl<tiftlPlv'tiO#t, JU t1_'_'1'<' /-F<t(7'd, 1o #,rbine-b'uci,'et

fnSlt<r¢. In the c,,_e o.f mulHst,(lC turbines, the

prob,d>il;ly of cota._.trophe from falhov o.f a, t,r-

t,bw hm4,'_,t i<_m,dl 9rearer. A fai[ed bucket in

a_t varly stage may dc._troy tDe. buvteet.s in su<'-

ccxsice ._ta.qc._ and stop or dc,_troy the e_ffine.

Turbine bu<>lccts arc subject to the eo,mbimtHon

oI ecnlrifuyal .s'tre._._._,ibratory slre<_'s, hiyh and

r, pktl!/ cha_y;ny temperature, _tnd a corrosive

atwo,_,phcrc. T, rbinc buckets c,n fracture by

stre._..,.-r,pture or ./ntlfl,e. or (_ eom, blmttion

thereof. FrneDo'e can be aecclcrnted by damaqe

from O#'(JI'tCIkI])f_I'H[I,#]'( _ OP OPCI%'tPC,_U, Of damnye

or <'r<,'],',; resulting from, th<rmal .fcvtigue, or per-

hap,_' from, eofro,_;o.n, or by ldc]r,_' c_tu-wd by solid

ob.j+ <'t._ in the gas ,_tr+',m.

SuSl(leS/[on._ are m,ut<' for rcdncgn(I the HX'eli-

hood of flight failure._" by ecrtoin (,o#_xide_'aliom_

in dc.,ign, oper<_tio.n, and in._peetion.

INTRODIYC_ION

Turlihm buckets are subjected to it more severe

and complex combination of stress and tempera-

ture than any other jet-engine component. The

buckets in current engines are subjected to very

lli_h eentrifulal stresses at temperatures of the

1 1(I

oi'der ,)f 1500 ° F. Also, they are subjected to ,n

tier ('o;'rosive almosphere and to gas impulses that

niay cluse the 1)uckets to vibrate. Rapid he,lting

and c._oling induces thermal stresses in theni.

Ilence. turbine bucket f,lilures are very conimon

and occur in a variety of ways.
Buckets can fail either in lhe airfoil or in the

root-fi_slening region. Since root faihlres are not

coiilliiOlt_ and root stresses and tenl[)eratures are

such that diltlculty can be relieved by design us-

ing em rent engineering melhods, the emi)hasis in

this paper is on airfoil failures.
Ttle various causes of bucket airfoil failures

'tre re, iewed, m:mifestations of failure are de-

scribed, and, in sonic cases, methods of eliminating

tile fa:,hire are indiealed. A discussion, based
oil (!on*iderations of bncke/-failure causes and

lneehai isnis, is presente(1 of the ineasures re-

quired in design, manufilcture, inspection, and

overhaul to avoid flight accidents.

MILIq'ARY STATISTICS OF BUCKET FAILURES

y AGNITUDE OF BUCKET-FAILURE PROBLEM

The nii)ortanee of bucket failures in liiniting

engine relial)iliiy is defined in two ways; first,

1)3' tim _everity of (talllage to the engine ;tnd the

llirp]all,_ (!allsed by a l)ll('ket fl'aelllre, {llld second,

by the frequency with wllich buekels ]fillS[ be

rel)]acell. The severity of (hunage caused by
bucket fracture is described ]aier.

I7.S. :_.ir Force records were studied to deter-

niine 1| e frequency of bucket failures, the life

of lmek?is in service engine_,"_ and the causes of

failure. Significant data, particularly in regard

to life _,f hot-section componems, are difficult to

obttdn. Turbine buekels are frequently replaced

in the field, an(l recording of every bu('ket re-

placemeat had not been required in any tlehl rec-

ord lllllil late 1954, :llid lheli for only olte engille
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model. ])'mr front lhese records are not yet

availal)h,. From examination of the I)isassembly

Inspection Reports (DIR's) the olmrating time

on :l lmeke( cannot be determined with eeriainty,

even on an engine l)eing overhauled for the first
time; all m" some of the 1tuckers may have been

replaced in the field. Thus, all accurale hisiot T

of bucket life and bucket rep]ae_,qYlelllS for all
eng'ine c:umot be el)lathed.

An al)l)roximaiion of |he nmnl)er of l)ueket

failures takin;r place can be obtained from a

stu(lv of Engine Removal llei)or(s (l_l_]_.;) 'rod
the DIWs. The I';IIR describes the reasons for

removal of "m engine from 'm nirplane when the
engine is replaee(l 1)3" anolher. No removal is

recorded, however, if a bucket is repl'tee(l with-

out removin_ (he engine from (he airplane, or if

(he engine is remove(1 from (he 'drplane, the

Imekel rephwe(l, 'm(l lhe en/ine imnm(lia(ely re-

ins(ailed in the same position in the same air-
plane. The EIII{ data tend (o minimize (he

lmml)er of bucket l'eplacenlen(s since, of all hot-

section components (excepting perhaps tile tail-
(',me), l)uekets are most ensily replaced.

A review was made of the ERR's and the

])[R's covering a 3-month perio(t for jet engines

having their first overhaul ("new" engines).
(Because of (littleulty in ()blainin K data, the

3-month period was not the same for the ERR's
and for the I)IR's.) Results from (his review

are _ziven in (able I for six en(_ine models hav-

ing lnore (h'lll 50 major overhauls during tile

• l)ll) '_sludv l)eri()d for _. J_ ,_.

• ) )*,A signilicant figure, abstracted from lhe EL L s,

shows the relative importance of the. turbine

bucket in causing engines to be removed from

an airplane for rel)air or overhaul. From 2 to

19 percent of all engine removals are for tile

slle('.ific lmrpose of rel)laeing furl)the l)u(.kels

(lal)le l, cohmm 4). If the figure ix given on
the I)asis of pereent./ge of engines removed be-

cause of engine or accessory failure (omitting

e)lg'ines removed t)eeause of foreign-object dam-
age, unstated reas(ms, etc.), (url)ine-1)u(,ket fail-

ure is resp(msible for from 3 to 44 per('en) of
5 'the removals (column , ). rhe en,.,'ines for which

these removal rates were found had l/vel'a_e op-

t,rat in g limes from 5(1 (o 155 hours (column 3).

Al(houKh the (able includes (he I)ereen(nKe of
engines overhauled because of (url)i)w-1)ucket fail-

m'e (eohmm St, the values are not 1)arlicularly

meaningful because the lmekets are often rel)laeed
in the field. Examination of the ])IR's (hat

gave 1)ueket failures as a cause f<lr overhaul in-

dica(ed that most of the rei)l,teemenls could have

1teen made in the fieh]. Sending a particular

engine to overh'ml was frequenlly arl)ilr.uT: for

ex:,mI)le , it: was felt thal a COml>lete examination

()f the engine was warranted.

A more useful fiKure to c(msider is the percent-

ave of engines examined during overhaul thai

required rel)laeement of turbine buckets l>e<"mse

inspection showed cracking or fraelure (from

causes other (han foreign-object damage). This
value was between o.6 'in(| 36 l)ercent (eohmm 9)

fro' the various entitle models and apl)lications.

TA]'>I,I,: I. -I,'Itl.R_UI,:NC.Y ()F ],;N(',IN1,; IlEM()VA[. I,'P,()M AIILCI/AFT, ENGINE ()VEIHIAUI,, ANI) I{UCKI,;T

Engine
cod(!

A 7
1', 3
B 7
B (3
B-I()
('7

Airpl:um
co(l(_

I{]';I'I.kCI';MI';NT ])URIN(.} ()\'],:RIIAUI_ I_ECAUSI,: ()F ]))I(-'I(ET ],'AII,Ull],;

[(!overs ol|ly elrlgi[l(,s in for their first overhaul.

( )l>('ra( ing
I im(' on

tlv('r;t_('

(,ngin(, in
service (since

]I()VC ()F last

ov('rhaul),
]IF

]';ngine
r('lnovals

})('cllllS(' ()f

l)ucke(,

l)(,rc(,ll(.
of all

r(qll ovlll,_

F 2 115 5.5
B-4 125 3
B 2 5O '2. '2
B -t 1-10 3. :_
1: :g 130 19

F I 155 5. '2

Engine
r(qllovlt[s

b('CIl, llS(! ()f

buck(q)
])l're(qll

of engine
I'('IIIOVIt]S

h('('lt IlS(' of

('ll_ill('

failure

14
(k 5
3, 5

10. 3
4J.

(.). !)

N'u)nl)t,r of

('ng, ill(,s

overhttlll('d

136
73
87
76

161
210

()l)('ral ing
I flu(, on

II,V('I'II _.('
('ngin(' al
OV('l']lttll]_

hr

l,]n_,ilws
ov('rhmfl(,d
|)('C:t llS( ) of

buck(,(,

1)('1'(!('111

of all

ovvrhallls

]';ngin(,s
having

buckets

r('l)l:w(,d
durin_

()V('Fh_tlI]_

pl' I'()t' Ill

(If lotal
i

160 O. 7 7. -I
2-17 I. I 28. 9,

(i [ 0 27. (i
55 0 2. 7
9,8 1. 9 5, li

::;(15 .5 I.-I
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The averave ollerating t inle to overhaul for the

several engine models examined r,mged from 55
to 305 hours.

Fivure ,_ of rhapter II shows that many buck-

ets are reldm'ed in file field maintelmnre "roll

repair pro,,.,'ram. The per'cntage again varies

with eno'ine model and applirati,m.

It is alqmrent that (1) lttrlfitw-l>twket dam-

a_e or |';lihu'e is an import;int cause {)f engine

l'emoval: and (12) that whenever engines are

examint,d in fiehl maintenance or in overhaul,

large pel'rt, nlao'es of the t,n_ines require bucket

replarelnent. The ol)eralin_ time for the average

engin(, in service or being ovt, rhauh, d is very low.

nnlch less than any desired overhaul lime. Sim'e

bucket faihm, s. other than those from foreign-

object d:lm:lge, ape tinle- m' ryHe-del,endelfl (as

is shown ];/ter), the frequency of f:lilm'es Pan

tJe i,xpected to im'rease :is average opel'at in V time

DII [h0 ell_ilWS ilWl'eases.

MODES OF BUCKET FAILURE

The I)IR's v,,_,re strolled t. h.arn the me.h-

anisms of hm,ket failm't,. Sonic of the inforn]:l-

ti<m <d_t:tined fr<mi them is summarized in table

II. (The EIIIFs and tlle liehl maintenance data
that were available did not ,..rive this informa-

lion.) Tlle l)lll's indir:lte tile loration of cracl,:s

or fz'm'tm'e on the lmPl¢l,t airfoil, and tlwse /lala

have Leen tahulated. The In'olml}le cause of fail-

ure e,mld 1}l'St be de_evmin/,d by a Paz'efu] t,x'tmi-
n:lti,m of the lntckets, I}u! sire'l, they wt, re not

av;lilah],,, 11.'pr<Amble rausp }ms been deduced

front the cPack h,caiio,_s aml fronl eXl)t, rie]lre

with these tql,_ines in NA('A test-stand studies.

ht ;tdditi<}n t,) the six t'llgine m<}dels l}einv ,wet'-
h;nth,<I f<)r thl, lirst time fin' which l'aihm, data

nt'e _ivt'n ill table I. dattt are included in table II

for one envine model <c{}tle ('-1) tl/at had one

C,I' lllt)l'l _ previous overhanls.

For the A and l+, engines, tile printe reasons

fin" lmeket repla{'enlent during overhatt] were

h, adinff-edfft, crm'kinv, prolmbly caused by ther-

nPI1 fatigue, and tip erttrkin_, prolmldy .aused

by nw,'h;nli,+:ll ftlti_ue. In only two cases were

tl+e lntckets artlullly frartured (it piece lllissin_).

(-'Jilt' of thpsP frttcttlres was undottl}te<lly the rl,-

sult t}f trailino'-edo'e tip fttti_ue; the cqttse of

the other is unknown.

TA BLt,; II. M{II)ES (H" 1/U(_1,21.71" I'AII,UIII,] INI)I-

('ATEI) BY I)IH'S

[Three-month l.,rio<I.]

Ilca,.,on for rel)htee-
merit (lluml}er of

l'bl£ine entdm,s with e:tclt

e{ h: failure type)

7, Tip er'u:ks .....
l, (Jontoltr crack_ __

{

8, Tip oral'ks .......

8, .._II_:at (,b,,cker:,ck,

5, (h'_,cks, LE .....

I 1, "]'E tit) broken off
-- i .... i

1', 7 12 Tip cr'teks
12, lleat cheek

cracks, LE

B 9 1, "l'iD crack
1, TE crack _

B 10 I, '1"1'2 tip _,)n,, __ _

2, I_I'1 tip re}l,,' _
I, I'_:'(}f tip br{}kt,n

off

2, Buck{'ls mis>;in_ __

(' 7 2, Tips scuffell .....
1, 1 '' of lip broken

off

A 7

B 3

(' 1"

l)robable cause

(b)

Mech fatigue
Not knou'n

"FhermM fatigue

Not known
MPeb f:nigue {

Meeh fatigue
"]']|erm:d fntigne

Mech f,tti._m,
Mech latium.

Mech fatigue
Mech fatigue
Not kllOWll

Not known

Hxct,ssive creel)
_ll'OSS I'll|It IIF(_ or

SI/ 1)hts mech
faii_uo

1, ('rack,- :t]l,t NoL known
t}uckles

39, 1" To 2" of tips NIP+ {}r SR plus
broke,, oft tnech fatigue

16, Excess stretch Creel)
1, (:rack 1" from tit)_ SIP+ or SIP+ I}lus

hitch ftttigue

l,Pa, ing edee, ],E; trailing edge, TE.

MI_( "lani(,al, I1 ('Ctl; _tr[ Ys+rUl)trlrp, St{

109 + IbgilleS ilrt,vi,++t,sly ov* rl atiled.

In

wt, l'(,

the r

frm'(

the r
]}lO(']l

{,n_i,

tilt, (; 7 t,n_'im_, tilt, r:tnses ,}t' 1}u,'ket failure

s<ltttl, wll:tt (lith, ret_t: tip s(:uflinV, i)robal)ly

_SIIII {}f exressive ('pee l} Ol' elonffation: and

ire ab<mt ;tn in<'h frtmt the tip, probably

,sltlt {}f slrl,ss-rttl)turt+ ,}r stress-rut>lure l)lUS
inira] f:tti_ut,. An e+trlier model of this

e, the ('-1, usin_ an alloy havinv smnewh,d

lowe_ stress-rul)tttrP strength, ]lad a nluPh higher
f'tiht "e l'tlt{!. ()f 1_}!_en¢ines (('-1) in overhaul,

56 r, quirt,d tmrkel replaPemtmt; bucket f'tilnre

was he reas(m fin" sendin V 39 <}f these engines

to <}_m'hatd. In these 39, the lmcke_s had frar-

lure{ along the chord, ln'<flm|fly because of st ress-

rupture or a combinati<m of stt'ess-mq)ture and
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lnechanival fatigue; 16 others had excessive

streleh, a result of excessive el'eel): and ill only

one enffine was a bucket rel)laced because a crack

was foruM. There is an impol'lant difference
l)elwee, (hese bucket failm'es and lhose of (he

A and B enftines. In (he A and B engines cracks

cattse_l l)y tip mechanical fatigue and leading-

edge thermal fatigue progress slowly enough that

they could lm)bably be fimnd by inspection, and

bucket fracture in fliffht could be reduced 1o =t

minimmn. In lhe ohler models of the C engine,

(he fractures 'dong (he. chord resulting from

st ress-l'uplure or Stl'ess-rupture plus mech'mical

fat iffne propagate from cracks so rapidly that

current inspection techniques prob'd_ly camml
prevent blade fractnre in fli_h(. As is shown

later, (,xeessive creep may be used as a replace-
IDPD! crilel'ion in some ihsl,lnces.

In subsequent sections of this paver, these

various failm'e mechanisms and related inspec-
tion melhods are described in more detail.

TIME DEPENDENCY OF BUCKET FAILURES IN SERVICE

In vhapter 1I, a(leml)(S are made to deter-
mira' "whether bucket failurt, rate increases with

en_rine Oln, ratin ff time. It is folmd that in the

engines where failure rates were sufficiently high

to l)rovide an ade(lua(e saml)h, fl'()In (he limited

data awlilal)le, failm'es were more likely with

increased opera(inff time. The B-: / engine exhib-

ited an ideal tyl)e (if failure curve (lift. 1:2(I))

of <.h. II); (here was a delini(e grace period
In, fore file tirs(, bu('k('t l'aih)re. Fliffh( failm'es
(if 1)u('kels could be elimim_ted if failm'e curves

/m(l a known ftt'ace period (:dl l)u('k(,(s could be

rel)la('e(l at (he end of the _race l)eriod). Longer

ffra('e periods are desire(l, (if course. If "wear-

()111"" failure curves (|o llot exhil)it a grace 1)e-

rio(l, il is iml)era(ive (hal the enffine lie rede-

siffne(1 ()r the opera(in;z envir()nmen( chanffed t()

l)r()vi(h , one. If failm'e ra((,s are in(let)en(hmt of

time ("('h:In('e"-tyl>e failures), (.han_es must be
made to eliminate tit(: failure or reduce the fail-

m'e rate to a(:(:eptal)le values. With certain types

of failur(, me('hanism incil)i(mt fracture can be

fo)m(l a( reffu]ar inspe(:(ion I)eriods, thus avoid-

inft I)u('ket fraclm'e in fli_rh(, and it may be pos-

sible (() safely <'()ntinue ol)era(ion while a eor-

l'ecti()n for the failure is being found.

EFFECT OF BUCKET FAILURE ON ENGINE

SINGLE-STAGE TURBINES

Faihu'e of a bucket in a single-stage (urbine is

not usually serious. Many times a pilot is un-
aware (hat a bucket has failed until it: is found

missinff on posl-fli_ht inspeelion. The fragment

of tlm failed hucket goes out the tailpil)e. In

some cases, however_ fraffments of failed ])uckets

have been known to ca(('h be(ween the tips of

the rotatinff buckets and the (m'bine shroud. This

can cause al)l)re(dal)le (htmaKe , and may wreck

FI(_ URE 1.-- DILIIIllg(! to _i))gl(,-sl,,_g(, tllrbi/l(, /'(!.'.)llll J.))ff from

bucket, faihm, (number 54).

'm engine. An eXaml)le in which serious dam-

a_a'e occurred is shown in li_ure i. Ilere lhe frag-

men( of lhe faih,(l l)u(:ket (no. 54) has l)rokell

off (w()a(hliti()Im] l)u(rke(s and severely damafted

the (ills of all others on lhe wheel.

The impor(ance of failm'e in sin_rle-stage tur-

bines is indicated by the fact that of all (:205)

jet air('raf( a<'<'i(h, nls caused 1)y enffine failure

or malfunction in the year 1(,)53, tm.bine buckets

caused S percent (fig. 13 of eh. II).

MULTISTAGE TURBINES

])alll_l.ge resulting from faihlre of turl)ine buck-

ets will likely be nmch more severe in multistage

Im'bim, s than it has been for single-stage turbines.

In mul(is(afte turbines, a fragment from a first-

sta_e l>ucke( faihu'e must pass tln'ouffh subse-

quent slages where it can cause ,tl)l_recial)le dam-

a_e. A failed (hree-s(a_e shrouded turbine is

shown in figure 2. Faihu'e of a second-stage
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(a)

(a) Sq,cuiM ._tage of lurhim,: all bucket strum<Is gone.

"[?II',IRI,; 2. -I)_l,l]l:tge to thl'e_'-sl,:_t_e IIIl'bill(, r('sllltinff fl'OIII

f:tiluz'e of ,,.econ(t-slage Imcket.

1,uckel broke the lips aml shromls of all the

see, rod- aml lhir_l-sla,m lm_'kels. The lWOl_nhilily

is very hio'h that :m envim, will no longer pro-

duce lhl'ust if a bm'kel frills in any sl'lVc except

the last: lheret)>t'e, the relial)ility must be much

(b)

(h) ('losmq) _}f fracl ar>d s_,con(t--;t:_e bucket.

l"I_:l m.; 2.. ('mfiimled. l):mm_e 1o t|lrue-sta_e tllrbine

r_,sullimz fr_mi t:tihnu _>f >eeund-stage bucket.

(c)

(ci "bird sl:ig_' i)f Ilirt)Jll(,; :ill blickt,I :.hrolld. gonl,.

I"I+;IRE 2. (!Oliehld_,d. D:iliing,_, IiJ lhitq,-sl.n_, lllrbiliO

I'_'_uliin_ fl'l)ni filihlru of s_'('_'lii(|-sl_iT_ t)li('kel.

7realer for buc|_eis of nnillislaT0 lui'bines lhan li,is

lleen re. luired for sintgie-siavo turbines.

MODES OF FAILURE

l)isir I)utions of 1oniperallll't_ lind Olillirit'uga]

s[ l'PSS iI !o11(_ lli0 airfoil of l llrl)hie buckels of two

lyl)ica] :i"' ellTilll'S Wlieli oper:iled 111 full elivine

power i re shown in tigure 3, Tenll)0ratllt'es WPl't2

lllOaSlll't/| wilh tliernio(!oul)les elni)edded ill the

1)ll(!kets The slress values f_n" i]le lwo iurl)ines

:ll't_ rel)resenlative of ]li_']l llll(] ](IW S|I'PSS levels

in ('lllTl,lil I)r_ldm'li_ni tqi_'ilipS.

In alldilion i_) l]ie cl,nil'ifll_'al load. lip.! ,_lis

t'ol'('es ilnlloSe a I)eli_lin_" ll):lll lid llie lnlt'i.:et air-

f.il. "lhe desi_'ner lmrily Cl)liil)l,ilsall,s for ihe

,"is |o:11 I),v lillili,_, ihe :lirl'oil slid'lilly down-

Sll'ealii ;_)lh:ll i'l,illi'ifli_al flil'l,e will induce oiJ-

]losile lending'. 'Hie lleiidiil,;' flwce ('all ])(! t'olil-

ldelely cancelled Ill Oll]V Olip ])tHIlt2 il]()ll 7 1[lie

airfoil :l>aii. Fili'illei', >_iliCt_ ilit! 7"as IJ01i([iii_ load

reduces willi all itmh, llllt| lhe envine operales at

es_enlia!]y ('OllSlillll speed, lhe _IlS ])ending load

('illl [)o cancelled for on]y o11t_ altiiude. If the

lJucl,:t,l; s tilted to coiiil)ellSall_ for iho sea-level
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28x105 . ,-
Engine code ! -- Stress

...... Temperoture

2O

1600

1400

1200
I---

I000

0 20 40 60 8'0 I00

Distonce from bose, percent spon

]gi(]l'Rl,: :_.- rOllll)pl'i_tllI't_ _nd ceultrifugal slres,_ along :fir-

foil of turbine Imck_,ls of t_vo t vl)ical jet on_inps.

_'ls h)ad, it will be overtilted for the _as load at
altil ude.

STRESS-RUPTURE

In the range of temperalures in which turbine

buckets operat% there is, for each bucket nmte-

rial, a tinite time before fraoture for each com-

bination of stress and teml)erature. This time

is called the stress-rupture life. Stress-rupture

curves for _t representative alloy, S-816, are shown

in tigllre 4.

If (he distributions of centrifugal stress and

temperature of a bucket are known ('is shown in

fig. 3) bm'ket life at each point Mon K the l)ucket

]en_rth can be predicted from interpolations of

Stl'ess-|o-rul)tm'e curves like those, of figure 4.

If predicted life is plotted ao'ainst tmeket sp'm,

the curves for eurl'ent product ion engines usually

h'we lhe form shown for two engines in figure 5.
The minimmn in each curve identifies the critical

sect ion or "critical zone" in the bucket--the point

xxlmve tlle t)twket is mosl likely to fail Iw stress-

550

• 1500

20 40 60 I00 200 400 I000
Ttme to ruulure, nr

FI(;II¢,I,: -I.- _(ress-rlll)Iure ('lll'Vp:_ for rcl)resentalivt, I_llekct

:dloy, S-816. (Data from ref. 13.)
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turt)ine buckets.
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I'Ul)ture. 'File whle difference in ndnimums for

two ]>r()duction llll']_ilieS (900 :IIld ;_(),000 ]II') is

of interest, lmrge.-afetv factors (as is indicated

flw en_zine B) favor relial,ility.

The curves of figure 5 apply to the stress

and teml)eratul'e conditions of full en_zine power.

Since stress-|'ul_ture lift, is very sensitive to stress

alia |ellll)el'Ittlll'e, ol)eration at less tllIlll full ell-

gine power (e.;z., at ,.ruise) or higher than full

en_zim, power (overs])eed or m-ertemperature)
will im'rease or decrease the time to fracture by

stress-rupture over that indicated by the mini-

lllll]llS ()f fq_.,rllre ,'-J.

Fin' exmnlde, the data for S-gl(; alhw (fizz. 4)

indicate that ;It constallt tell|l}erattlre It lO-per-

cent ch:|n/e in stress (approximIttely a 5-percent

ellllH_..re ill ell_'ille speed) c]mnoes lift, 1)y a factor

of al)<:,llI 3. ._. ll)-l)el'cellt c]lall_e ill tellll)el'a|tll'e

tntergronular crocking3

I

(from 1500 ° F) changes life by a factor of ;tl)out

lOlL Although the effect differs in amount from

alloy t) alloy, all bucket 'dloys are stroll'u" in

that changes in stress-rupture life "u'e large t',,r

small changes in temt)eratm'e or stress.

In /eneral, the life predi('ted from stress-rul/-

lure pr.)llerfies is the longest t]lat the bucket couhl

I_e exl)t,,ted to run at full engine power, since the

<rely stress <'onsi(lered is that induced Ily <'en-

trifuga force. ()ther enviromnental factors, sm'h

iis vil)r tlory stress, ('orrosioli, IherlllIll stl'ess_ Iilltl

iml)act, will reduce the lift, beh)w this value.

Incil,ient stress-rul)ture fail|we appears as ir-

regular imergr:ulul'lv cracking in a narrow z.ne

of the airfoil siren corresponding to the mini-
nmms of the curves (the "critical zone") illus-

trate(l in fiffure 5. [7sually the ('I'aeks are not

conline.l i() the leading ()r trailing edge, but ()c-
,'ur ;it rand(,m across lhe chord. Iht(.kels that

hqve completely fractured (fig. 6) have many
cracks on the airfoil surfaoe adjacent to the frac-

tm'e. Since the fra<'lure ix inter;zranular, the

fracture surface will _Ze|/e|'ally lie rough.

l)ete!tion of stress-rul)ture cv:wlCs durin,/ en-

gine il_sl)e('tions oann()i ]w (.ounted Ul)()n as a

met hod of avoiding tnwkel fra(q ure, tle('ause ,om-

l)lete tr:w|ure generally follows cra,'kin,/ very
sh()t'tlv

BUCKET ELONGATION OR CREEP

At Ill 3" ,'ondition of stress 'lntl lentl)ertllllre

shll'Wll ()ll Ill( +' slress-rlll)Illre (-llrves of fi<Zlll'e 4,_

ilw tes: specimen ehmffates with tinLe ill a man-

II('r de_('l'il)ed l/y tile ideal i'm're of liffure 7.

When load is al)l)lietl, |he sl)e('imen eh)nTales

elastically then 1)lasti('ally at It deel'easin/ rate

([iI'sl-s a,_e ['reel) ) mltil the rate be('omes :ll)-

lwoxin Im, ly c_)nstant s(,('()ml slag(,). I,'inally,

10 ¸
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t"t<:cm.: It.- "l'yld(,:d ,,-Ii'vss-rtll)Itlro fl'aVitll'V (.OllSt/llll).
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tile l';.l[e begins to increase (third stage) until
fra('( life O('('lll'S.

l'nit elongation, or slrnin, is not uniform along
a lm('ket length because of the nonunifornt stress

'rod lemlterature conditions (fig. :l). A typical

distrilmtion of strain ahmg tile leni_th of one

l)arlicular bucket after 9 hours and after 08 hours

of operation is shown ill fiTure S. The zone of

IllllXillllllll ('l'OPl) ('Ol'l'(_,sponds |() the ZOll(_ ()f lllhli-

nuun sl:ress-rul_ture life of figure 4.

Although some zones of the lm('kei may slt|'fel'

very large local strains, l()lal bueket elongation

nm.v I)e sm'dl. FiKure 9 shows l)lots of the strain

in the {:2-in<,h z(me of maximum creep and in

the total Imeket elongation against time.

The designer is interested in knowing the al-

h)walde centrifugal stre.-s and temperature be-
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FIct:I_E 8.--l;]longation along bucket. }'_ngine C-1 ;

Ilastelloy 1_ alloy. (1)ata from ref. 14.)
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Iq¢;¢:nJ,: .q.-- Comparison of total bucket elongation uith
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c_luse lhey aft'eel I)oth the time to rupture and
the time m which elongation of lhe lmeket will

del)lete the operating elearan('e and cause the

Im('ket tip to rub lhe shroud band. Typical

design curves giving time 'rod slress lo cause
Val'iOllS lllllOlllllS ()f Sll'_lilt Of fraetllre are sho_,vn

ill [iO'llre 111 for Ill(' alh)v Incom, l 550. Because

. r_._lor_gatlor_ percem

J:2 Q."'>,.'\._ u p.t.u re ........

a i:i :i .............

&
30 ....... _ ..... x, ,_-_,,. .......

..................... \,,( .....
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tq(:l'm,; 10.- Typical de_i_zn curves for lneonel 550 :it

temt)(,r:_t(lre of 1,500 ° I". (Data from ref. 15.)
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I:I_;IICE 1 I. Necked ImckeI.

lhe _irain in a bucket is highly localized, ioial

ehmgation is usually small ; slress-rupt ure frac-
ture usually occurs before tile allow'tble total

ehmgation is exceeded. Tiros, slress-rul)ture usu-

ally becomes the more important design criterion.

('reep al)pears as bucket stretch, bucket-shroud

rublfing, or lmcket necking (loc'd reduction in

area). Figure 11 shows a necked bucket. Neck-

in K of this de_zree is not common; furthermore,

neckin,_ calmol Ire relied upon to indicate incipi-
on1 lmcket fracture because the time between its

first aplmarance 'utd fraclure is usually too short

and Unlwedictalfle.

_VCKET ELONC*TmN AS IiEPLACEMENT CmTEmON

If llw all.v Ires large elonffation to frm'ture
aml if the bm'kets fratqllre lx,caltse ,)f stress-

rupture, elongation or creep may be used as a
basis for bu(:ket removal to avoid fracture in

flight. Because the strain that might indicale

impending fracture is highly localized, it may

be desirable to place scribe marks on several of

the airfoils to permit makin_ elongation meas-

m'ements in the specitic important area. If one

or two reached ,_ specified elongation, all buckets

wouhI be replaced. This scribing technique has

I)een t, sed for several years in test-cell evaluation

of ma-erials_ and no bucket fractures have ini-
l iated at the scribe marks.

Several practical problems :wise if bucket elon-

gation is to be used as a bucket replacement cri-

terion. One problem is the variability of elonga-

tion of buckets within one heat, among heal s, and

with variation in engine oper'ttion history. The

heat from which a group of buckels is produced

is usutlly not isolated, and any one wheel may

contaiJt buckets from several heals. Figure 1:2

shows elongation curves attd times to rupture for

stress-'upture specimens cut from six buckets

from '_n engine picked at. random from Air Force

slock. The specimens were tesled in stress-rup-

lur6 nachines at 23,600 psi "tnd 15()0 ° F. Tim

daft obtained showed little scalier; total elm>

gallon ranged from 15 to _2 1)ercent, and time
to failwe from (;5 to 130 ]ram's. If data such as

24 I[i]T]
I Time of fraclure

._+_I
02 4 6 I0 20 40 60 I00 260

Time, hr

FIGURE 12.--Variation in elongadion of specimens cut from

random buckets of Air Force stock lcste(l in laboratory

stress-rupture machine. Tenq)erature. 1,500 ° F; stress,

23,600 psi.



FACTORSTHATAFFECTOPERATIONALRELIABILITYOFTURBOJETENGINES 119

these are available for a bucket material, one

may select, as a basis for rel)lacements , the mini-

nmm total elongation that might be expected of a

sample, in this c'lse, 15 percent (specimen 2).
In addition, an allowance should be made to en-
sure that a bucket faihn'e will not, occur between

illspection periods. For example, if it were

assumed that an engine might operate 20 houl_

at full I)ower between inspections, the buckets

shouht t)e removed at the minimum elongation

obtained P0 hours prior lo fracture. For tlle
specimens lested, the buckets should be removed

when 11 1)ercent elongation had been re'u?hed (20
hr before the fracture of specimen 2).
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I;'ICL'RE 13.-- -Elong'tti(ms of S-816 buckets run in different

wheels.

In the engine, variation in cree l) rate of the

buckets may be even greater than among these
specimens. Figure 13 shows elongation of the

1-inch zone having maximum elongation for eight

S-816 buckets operaied in a code C engine. Buck-
ets with the s'une number were operated in the
same wheel at the same lime. Solid curves are

drawn to the time 'It which the last data point

was taken: lhe short vertical line beyond each
curve indicales the time when the bucket frac-

tured. The final elongation "it time of fracture

was not known. Apparently l)ecause of the scat-

ter of elongtttions even in one engine (for ex-

ample, engine 1 or 2) t)ucket elongations for

reinowd would h,tve to be set quite low if 'ill
turl)ine lmcket failures were to be avoided. From

tile data herein, all failures could have been pre-

venled if buckets had 1)een removed after 4 per-

cent el<rogation. The amount of useful life that

lnay be thrown away can be redu('ed 1)y reducing

production vqriability and 1Fy assembling bu(.k-

ets of only one heat or lot on one wheel.

The usefulness of elongation as a replacement

Clqterion may be reduced by several factors; one

of them is use of a bucket alloy having low chin-

gallon to fracture, lnconel 550 buckets were

operated along with S-816 buckets in both en-

gines 1 and 2. Although they ran nmch longer

th'nl lhose of S-816, with lninimum failure limes

of 450 hours, the last elongations measured l)rior

1() fracture were less than 0.3 percent in the

critical zone on any of these tmckets. Obviously,

elongation could not be used Io predict failure of

lhese buckets. Later it will be shown that creep

me'lsurements ('ararat predict bucket faihlre if

the I)uckets fracture I)y mech'mieal f'digue or l)y

thernml fatigue, since elongation before frac-

ture can be negligible.

In smmnary, tile use of bucket elongation to

l)redict failure is limited to lhose l)uckeis of

alloys that have large elongation to fracture and

in which the cause of fracture is stress-rupture.

If a low-elongation alloy is used, or if the life of

the bucket is decreased from tile stress-rupture
life t)ecause of thermal or vil)ratory fatigue,

elongation me'lsuremenls will be of litlle use

except to warn lh'tt a severe combination of

stress and overtemperature ]ms l)een encountered.

VIBRATORY STRESS OR FATIGUE

The most important source of excit'ttion of

bucket vii)rations is lhe impulse given to the

buckets when they pass through the wakes of
the nozzle vanes. The flow from individu'd com-

1)ustion chanfl)ers likewise introduces irregulari-

lies inlo the gqs flow impinging on lhe buckets

and may also excite vibr'ttions. The frequency

of vil)ratory impulse imi),u.led to the l)ucket is

llms a function of the number of nozzle parti-

tions, Ol" comtmstion chambers, 'rod of engine

speed. The trackers can vibrate (fig. 14) in sin>

1)le bending, in torsion, oz" in con_I)lex coml)ina-

lions. I)ifferent patterns or modes of vil)r'dion

are induced, depending upon tile frequency of

lhe excilation (fig. 15 and ref. 1). Whenever

the natur'd frequency of the lmckel is the same

as or a harm,talc of the excitali,m fre<luency ('t

,'tradition of resonance) the amplitudes and the



120 TECHNICAL ]_FPOHT H--54--NATII)NAL AER(INAI'T[ 2,'4 ANI) SPA(H: AI)MIN1STRATION

Bend ipig Torsion

Complex modes

l,'l(;vRl,: 14. .M(Mvs of turl)il_(,-buek(q vibration.

induced stresses lllav lit'COllie Vel'y large. Bucket

vibrati.ns at nalural frc(lucn(qcs in the range

froni 10()[) 1o l()J)00 cycles per second have [)eell

nieasured in opcrathig engines.

'l'vpi_'al fatiyile curvt, s for a hilzh-leniperature

alloy (N-155) at. rOOlli teliipt, raturt, alid at, e]e-

vitlcd lcniperature ill'e s|lown ill figul'e 16. Ai

l'()(/lll |elllp(_l'lltlll'(', the ('llI'Ve t)PCOlllOS }iorizonlal

Ill it Stl't, ss of 5;},000 psi (the endllrance limit).
Thus the ni,ttcrial can stlui([ il, vibratory stress

]t'.'-S l ii;ili 5_I_t)()0 psi indelhiilely without fl'acttll'e.

Ai i,h, valed lellil)el'aLtlres nillleria|_ do |lot show

2160

/' !
i

(/ \

Frequency, cps

4020 8500 9450 i0,700

L--------

"_ c _ ,"_ L'

Leading edge

2050 5625
_

6325
Frequency, cps

,j

8800 9625

]qcvii.n 15.- Nodal patterns for vin'ious fre(lueimies of

vibration. Fundaniental frcquencyp 1,270 cycles I)er

se('on(l. (l:roni ref. I.)

an mi(hu'anue ]ilnit_ at, least for times or cycles

Io fai}lil'e _lf ln'a('ti('al interest; lhat, i% wil]l it

l)articilhtt • ilpl)lied stress there is a corresponding

l inie I ) fracture. The elongation al fraclure in

pure taliguc_ either fl'Oiii bending or frail| ten-

SiOll, ii; negligible.

Typ cal fatigue i'raelures are shown in fi_zui'e

17. li,ltigue ('ra(!ks arc lisually follnd singly its

shown for the trimsvcrse cracks of figures 171a)

and (1,) and the radial tip crack of ti_ure 17(c),

as col lrasled wiih stress-rupture cracks, which

are us_uilly niallV in liilniber. Fatigue cracks iiia,v

1)e fOlllld ahllost iln3"where on the airfoil_ whereas

stress-,.ul)ture (.ravks are ('onfined 1o the previ-

ously leflned "('rilieal zone." Fatigue cracks are



I,'AC'I'()I/S THAT AI"FI'_C'F OPI']I{ATIONAL ttI';LIAI31I_ITY O1" 'fUllt_O,JI.;T EN(IINt,,'N 121

Crack

(a) (b) (¢)

(a) "l'ransv_,rs(. cracks.

(a)

(b) Transverse tip cracks. (c) I{adial tip cracks. (d) Two tyl)ieal ,_urfaee_.

]"m URn: 17.--Tyi)ie'_l fatigue failur(,s.

tralls_ralLttlar filial ILll al'ell, of [he fracIllre Sill'-

face will be rehtlively smoolh (fig. 17(d)). The

smooth area frequently will have been subidi-

vided hv semicircuhtr bands called 1)ro_ression

rings.

In many cases the vibratory stress is super-

imposed Ul)On the centrifugal stress. The result

of this SUl)erimposed vibratory stress is to re-

duce stress-rul)ture ]i fe and to reduce the elong:t-

tion :it fracture.

The effect of SUl)_,rimi)osed vibratory stress

upon stress-rui)lure life is shown in figure 18.

Here, stress ratio (vibratory stress divided by
mean stress) is pl,tted against life for three

levels of mean stress for the alloy S-816 at

1500 ° F. if a tm'l)ine l)m'ket were operating at

1501) ° F alld II. stress of 18,600 psi without any

vibratory stress, the bucket fracture by stress-

rulHure could be expected at 1[)00 hours. If,

however, a vibratory stress of 61) percent of the

eent]'ifu_zal stress were SUl_erimlmsed (point a),
the expected life of the bucket would be re-

duced io 440 hours. The lna_znitnde of this

effevt varies with mean stress, teml)e]'atm'e , and

alloy.

An example of how ;t vil_ratory load super-

imposed on the cent rifugal load reduces lhe elon-

gation 'tt fracture is shown in fi_zure 19.

When vibratory stress is SUl)erimposed on the

centrifu_zal slress the al)l)ell, rallce of the frae-
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FIfiURE 18.-- Effect of vibratory stress on lilnp to rltiiiilr( _

of wrought S 816 at, 1,500 ° F.

tures is dependent Ul)On the niagniiude of the

vibratory stress rehltive to the nlean tensile stress.

This dependency is shown in figure 20. If vi-
I)raiory stress is high relative to niean tensile

Sll'ess, tile fraellll'e shows typical fatigue elll/i'llc-

iol.i._ti(,s, a snioolh lriilisgrantlhir &relt oil tlm
frliellir(_ sllrf;iee> :ilid lie addition.tl cracks on tim

airfoil $11rfa('e liear i]le point wlierc tile faihu'e

stlu'h'd. 1Viih I11) vibratory stres% the speci-

lilellS, Of (_ollrse. ]lave only stress-rupture f'dlure

c]uii'aeteri._lles. With sniail aniounts of viliratory

slress ilia fraolure lllily }HIve eluiraeterislies oi[

stress-rupture only> or fatiglle oniy_ or a comhi-

ll;ltiOll dependilig Oil the alloy eolnposition lind

the lenlperiitilre (l'ef. o). In fli(!t_ lhe vilJrll.iory

.<tress ellll ])e high ellOllgh 1o (qlllSe till al)pl'e-

('ialile decrease hl life over tile life l)re(liiqed on

lhe basis of stress-rupiure (liieall stress) "l]one_

witliout hiirodu('in7 lilly indications of fill lTue in

l lie fra('t ill'e. Therefore. ev(,ll th(illgh onl.v st ress-

ruiilure ('h:irli('lel'isli('s ni:ly }to visible in ilie fr)i('-

+_t5,000

Q_

<n+ I 0,000eJ

o + 5,000
o

i i ] i , i i

0 I0 20 30 40 50
Reduction in area at time

of fracture, percent

FZc, URE 19.--I,]ffect of vibratory stress on specinl(!Ii (.lon-

g:ttion. IIcat-treated wrought S-816; temperature,

1,500 ° F; mean stress, 25,000 psi.

, Slress-rupture (no or low

v bratory stress)

f /-Surface crack_ _1_, I_

iI

, Fatigue (high Fatigue

vl Dralory stress) _112 "__i" Ijj_!_l_ ,_. fracture

,-Stre_s-rupiure followed by fatigue _-Stress rupture

,, (mlermed_ate vibratory stress) , Fahgue

fracture

q

I

l"If:l;ili.; 20. TylH('al Imck('l failure>.

(lll'e_ t, eallllOi ])(, Sill(| wiih ('eriltinly lhl/{ fatigue

di(l 11 )t l'(,([ll('e I)u('kei life. ]li sOllle eases, :frac-

lllr(,,_ ,,xhil)i( hi_ ()lily _I re,_S-l'll I )( tire (']i'ir:i('l eri,_tios

OOellr ()ill.4(le (lie "('rii i("ll ZOlliF _ for si reMs-l'lil)l ilre

fra('ll l'l,. _11(!]1 fl'li(-lllri.s I)v virlue of l]leir ]o-

Clilion ill(tile SllO'gos( thai f:iliTIle llllly ]lave eon-

(ril)ui,(l it)the failure (ref. 3).

Til_ llse of "liiv crack as a r(il)ia('enl(,ii( criterion

to av, iid <'onip]ete bucket fl'tletllr(_ hi tNglit de-

pellds upon tile rate of propilgi/lion of the erae}{

to coiaplete fracture. If Olie could be sure that

it era( k wouhl not propagate 1o eoml)leie frac-

ture |,el'()re |lie next insl)e('tion; tim bil('ke( iniiy



FACTORS THAT AFFECT OPERATIONAL RELIABILITY OF TURBOJET ENGINES 123

be satisfactory. For a fati_zue crack, the rate of

1)roImzalion may depend largely upon its loca-

tion on the bucket airfoil. Radial tip cracks

(Ii_z. 17(c)) have been found in at lsqst one

sng'ins study to lwopa_zate very slowly; cracked

lm,'l,:sls ('_mhl be fmlnd and rejected (lurin_ in-

sl)e('ti( ns. Fatigus cracks across ths chord (fitZs.
17(a) and (b) 'rod o0) I,a_e a centrifugal lo'ul

SUl)crimp(Jsed upon them (increasing as lhe crack

is locals(| nearer the t)ase) alld Illay be exl)scted

to 1)rol)ao'ats m()l'S rapidly.

Ths combination of high vibrat()ry stress and

high fre(tusncy llmt mav occur "tt reson,mcs c.m

fracture "/ I)uckst in a very few minutes. Thus,
the avoidance of resonant conditions thai result

in hitzh vibratory stresses is very important.

In dssi_zning an engine it is impossit)le to pre-

di('t with certainly thai high vibratory stresses

will not be sn('ounisrsd. If high vibratory stresses

are f(mnd, m' if fatigue fra('tm'es are encmm-

tsrsd, sevsral clmnges can bs tried to reduce the

vibratory stresses. Some of thsss are qs follows:

(1) The. sources of excitation c'm l)s altered

by mstho(ls such as

(a) ('h,mging the ]mml)er of nozzle vanes to

('hangs the excit'iiion frequency or changin K ihs

spacintz of tim nozzls vanes to ln'eak up the re,..m-

larity of the impulses

(b) Chan_in_ tim mmfln, r of ('mntmstors or ns-

ill_ lill :/llllt|]flF COllll)liStO]'

(c) ChanTin_z lhe distance of the wheel from

ths nozzle vanes (ref. 4)

(o) The bucket vibration charactsrisii(.s can
1)e altered I)v methods such as

(a) (TlmngintZ the buclwt ge()mstry

(b) Stiffening the lmcket bv lhickenin/ or I)y

shroudintz the lips

(e) Dnmping vilw./lions (t) 3' n.,lll,)_ls sinlilav

to lh()ss discussed in oh. IV)

(3) The n!)ililv ()t' tile Im('ke(s Io wiIllstan(1

villi'alien llHly ]is ]nil)roved liy nleiho(ls Slich as

(a) Changing surface-stress stats t)y I)olishing

or shot-peening

(1)) Ch'mging the material to one having bst-

let fal igue 1)roperiiss

Ill SOliie Sllses, it may be worthwhile to in-

Sil'lllilSilt lhe turbine buckets with strqin _'a,,es

and (hqermine the engine speeds lh'lt cause reso-

llalios. These criiic'fl speeds can then be avoided

hi fulm's engine operation, if they do not occur

ill inil)ortqnt operaling condilions such as at

erilise of 'll rMsd 1)owsr.

TltERMAL STRESSFATIGUE

_inoe ills leading aild tl'ailillg edges of tlll'bille

lnlsksls hsilt and cool niuch nlors rill)idly than

the thick lnidchord regiol/, chordwise tenlpera-
turs differences occur in the lmskets whenever

the engine is ol)erated through transients, such

as durhig st'lrling, siol)l)in</, a.(!('eh_raling_ and

decelerating. SOllle of I]IPSS lelnlleralurs differ-

sitars hays been nieasured with tlierniocouplss
and are shown for the turl)ine bucket of the en-

gilts B-9 ]11 fi_l_lres o1_lo o,)

Figure 71 shows that for this engine during il

norlii{tl starlD tenll)eratllre differsnces beiwssn ths

h,ading s(lge and the nfidshord (a distance of

about 1 in.) are of the order of 600 ° F. In a

hot start, the temperature differsnees will lie

gre'iter; in the case shown in figure 22 thsy wers

of the order of 800 ° F.

Bucket tsmperatures meqsured (turintz "l nor-

nml sngine acceleration from idle to full 1)ower

are shown for engine B-9 in figure 23; the tenl-

peralure difference 1)etwesn ]eading edgs and

midchord wqs about 185 ° F. Temperatm'e dif-

fersncss nieasured (hiring a shutdown from full

powsr to stop (fuel suddenly shut off when run-

lihl_ al full 1)()wer) have I)eeii ()llsei've(I Io Im of

ths ordsr of 350 ° F. These tenlper'llure differ-

elwes will vary :tilt(ill/ sngine designs.
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FI¢;URE 21.--Temperature conditions during "no "mal start." (Data from ref. 17.)
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(h) Turl)ine-l)uckel teml)er:ttlu.e diff('r('nc(,s.

t;I[:l'Ru 2;/. Tumpernture ('o_(tilions (turi_lg :teeeh,r:llion from idh, sl)(,e t (3,000 rpm) Io rated sl)e[,d (7,950 rpm).

front ref. 17.)

Te]npernture dilt'erem:es induce stresses in the

buckets because of (lifferenli'tl thermal expan-

sion. The thin leadin_ or trailing edge heats and

cools ]nore rtlpittly them the midehord and is

restrained from exp:lnsion or contraction 1)v the

_l_i('l¢ nfi(l('hord section, _u_d thus high compres-

sion stresses (during he'tting) or tensile stresses

(during co()lin_) :tre induced in the edges. Tem-

t)eraiure gradie]ds of the magnitude described
above are not. sufficient to cause ¢racture in 1

('yele, but with ret)eated cycles the bucket can

fail by wh:tt is calh,d thermal fatigue. Of iirst-

order intport;tnee in f;dlures by thermal fatigue

( ] )a t a

is the )nttnl)er ()f ('y('les (o whicl_ the blade has

bee]] ex )()sed rather t]mu lime of ol)erat ion. Time

is un(h ul)te(lly of importance, in that. time at

high t_ml)e]'alure will permit, some relaxation

betweet e veles and thus affect the initial stress

con(litit,n during subsequent cycles. The buckets

shawl] n figure 24 were removed fl'o]n :t]] engine

of the type in whi(:l_ the tr:u_sient data were

.htaim,.t. The buckets had 1)een operated through

451 cycles comprising 5 minutes at idle and 15

minute,_ :tt full power (a loial of 119 hr at full

1)ower)
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]:t,'.uuE 21.- la,adin_-edgecrackingfromrepeatedthermal_radienls.

.ks sh,mn ill ti_ure :24, thermal cycling" dam-

a_'e manifesls itself as warl,in _- m" m'ackin,: along

lhe edo'es of lhe I)uckef, predomin:ttely ahmg the

h,adin_' e,l_'e. IMmlly, nlan.v fine cracks are pres-

ent instead of lhe single crack tylfical of me-

,'hanieal faliKue. Tim cracks van (and usually

do) extend outside lhe stress-rul>lure "eritieal

zone" its deline<[ l_v tilt, <'entrifu#za] slress and

teml)erature. In the lmekets shown, tllere are

cracks along" lwo-lhirds of tim ]eadin#z edge. Even

if the buekels do not crack directly as a result

of lhernu/l slress, it is l)Ossil)le tllat tile repealed

working of the material 10' thernu/l stresses m' D,

lower st]'ess-rul_ture o]" fatigue stl'ength so that

buckets fail early by these mechanisnls (refs. 5

and (;).

Therm'd stre,qs ('racking tends to relieve tile

thermal stress, aml such cracks will not propa-

gate to eomplele fracture without additional '/p-

plied stress. The ln'Op'_ation to COmldele fr0.e-

lure del)ends tm other stresses, and the rate of

prolm,,:tlion will vary with eneine desi m 'Pile
• , m •

5::4962 ¢,1 9

1'tiller:' depe]Ms largely upon lilt' slress-l'Ultture

sat'ely factor designed into lhe lmeket 'Uld upon

tin' notch sensitivity of tile alloy. In tile ease Of

tile ]ow-stress enghle of tigure 3, a sample of

Imckels cracked in the rammer shown in tigure
:24 ran 300 ]lollrs without c(mlplete frtlClllre. The

,ra('ks c()uhl t)e detected in regular engine in-

sl)e_qions if Ill(, inspet'lions were made carefully.
If su,'h twaeks were t(i occur in the buckets of a

Ill/h-stress engine, lhey might l)e expecled to

]meh,'/le fatigue or to ilt'l ItS it notch; fop SOlile

materials, notehino- greatly decreases stress-

rupture life. In such :tn en#zine, thermal fati#zue

cracks lllit 3' Vel'y quickly 1)rol)aVate 1o cause con>

ph'ie fra<q ure.

17nforiunalely, the material factors that influ-

ence the su.qeeptibility of a material to cracking

due to thermal cycling are not understood. A.

study of this l)l'(dtlem nmy lead to clues to re-

(]llcti()ll ill till' tellilell('y for tllel'lllll] cl'lic],:ill,!., r

throuFh control of the metallur;zical and lilt,

l>r<)cessin:., • faclors, Ill tilt* :i[)St,ll('e (>f this under-
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standing there is still tile possibility of reducing

tim tendency for tllernnll cravking by decreasing

the tenlperature gradient through control of the

rate of telnlnwature change during transient op-

eration, hi the engine studied, the control of

if:is leml)eraiure during staI'tin_ (from lightoff

to idh,) was nl'unlal, and the rate of gas tem-

peralure change was, ll.,refore, a function of the

skill of the ()pel'alor. I)uring acceleration, the

fuel flow was scheduled against comi)ressor-

outlet pressure. Gas temperature was nol; sensed

t)y the engine control. It was found that the ther-

mal fatigue el'addng of the buckets of this engine

was associated will( the gradients induced during

slat'{ lng of tlie engine and that the cracking could

lie greatly delayed liy starling tlie engine less

ral)idly (refs. 7 and 8).

An()lhev apliroaeh lo reducing the stress in the

tmeket is to ('hange the bucket factors that cause

the gradients and tlie I'esullant stress. For a

particular rate of change of gas temperature,

the gradients set up in the bucket are a function

of heat transfer lo lhe lmeket, bucket shalie , and

thermal c(mductivily, and the conversion of this

gnldient to stress is a function of bucket shape,

modulus of el'lstieity, and coefficient of expansion

of tim numq'ial. .\n examI)le of a ch'mge of this

tyIle that may be investigated would be surf.we

coating on the lmcket tha! wouhl reduce the he'_t

transfer during transients.

CORROSION

Corrosion of the high-temperature alloys used

:fortnrbine buckets has not been a prolflem of

concern except where leaded fuels have been

used. In this ease, if the surface lemperature

of the lmcket is al)ove the meltin/ point of the

deposited lead oxides, the molten fihn of lead
oxide tends to react with the thicket surface and

cause "t rallid '"washin_ away" (ir erosion of the

surface. Solutions t() this problenl have not 1)een

fmmd. Leaded fuel_ (gasoline) have been used

for togisiie reasons, but sin('e they are no asset
t() tile turl.)iel en,dine, lheir use sh(,uld lie avoided

if lmssilde.

EFFECTS OF OVERSPEEI), OVERTEMI'ERATUIIE,

AND IMPACT

OVERSPEED AND OVERTEI_IPERATURE

A review (if l'nsaiisfa,qOl'V lh, porls and l)IR's

inili('ales liilit t,ngilie ovel'sl)eeds ()l' 4 io (; })el'eellt

ai'e (ccasionally rel)orted. 3ecordhig to t)resent

lechrical orders, if an overspeed of the order of

2 to I_ percent occurs, dellending on engine model,
the ,qigine niust lie renioved for overhaul be-

CallS( serious (tailtage niav have (),'(:ili'l'e(l io the

total ilig parts.

AJ oversl)eed occurs most frequently because

the e,mtr(ll lias allowed excess fuel to t)e injected;

tliilS overspeed is usually acconli)anied by over-

lemI)erature 'rod can very drastically reduce
buclo_t siress-rul)ture life. It. was ealeul'tted for

one _mffine that if fuel flow were inere'tsed to

give a 5-11ercent overspeed (10-percent increase

in s_ress) the tenlperature would increase by

about 200 ° II. Continuous operation at, this point

wouhl reduce the bucket stress-rupture life from

30.00,) to about 10 hours. With present knowl-

e(tp'.e it is not possible to state with certainty the

effe(q of lnonientary oversi)eed and overteinl)era-

ture on the stress-rill)lure life of lniekeis of this

engil e. The same inerease in speed and tempera-

llll'e WOll]d be more serious in :m engine whi(.h

is (ledgned with a lower slress-rui)ture life.

Typie:ll occasions when overtenq)erature lniffht

occu, without overspeed are 'is follows:

(1 During a hot start: in most current en-

gin('s eonlrol of the ellgine fr(nn start io idle is

(h'l)e ldellt ()u liilot titre

( 2 I)urin_ acceleration : lhe eonipressor may

stall, m" fuel th)w nmy be increased loo r'q)idly

(3, At full engine speed

(a_ I)uring afterburner i_nilion, since turbine

I)aek pressm'e can re(luee engine speed and eituse

lhe ,uel regulator io increase fuel flow 1)efore

lhe tailpilie ean ollen

(it) I)urilig drift or nialfunvlion of thernio-

('Olll) mS

(C ._i.t Veil5 r high altiludes, liriniary because

of it 'educlion in cOilll)l'pssof efficiency (see ch. X)

()_erlenil)erature mar lhus occur when tim

lmek,is al'e al a|liiost aiiy level of celili'ifllgal

sti'es4 between lhe negligible stress of "light,)if"

spee, I 'rod liiaXililillli sii'ess lit full engine speed.

Alth refill slime (,ondili(ms (if overleml)eralure 'ire

.f lo Ig (lur'll ion ( e.,,z., e()nl r.1 llwrmo('.uph, drift ).
III()Sl ai'e of sh()]'l dui'alioll, usually ()nlv seeolnls.

'l'ald,, I[I sunn!larizes sonio ()t" these ('oil(liiions

ll) 7' vea qluililalive ]n(liealion (if llie stl'i'SSeS_

lenllel'alllres, and dui'alion. Service daia indi-

c'ate illal ovel'teliil)ei'allti'e liiOSt COliiniolll.v co-
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TABLI': III. ()I'I';I/.kTIN(; CONDITIONS; I)URING WI[ICI[ OVEIITI:,.XII'FAIATISI_,I:.S MAY l_l':

ENCOUNTI']ll El)

129

('.n(litiot,

|tot start ........

Accel('r:tti.n, compre-s,>r st:ill_ _
Furl ticlw increased too rapi<ily .....
Afterburner ignition ...............

Drift or malfuneI i,,iil of 1herniocouples
Very ]ligh :lll itlld_!s (prinllu'ily re-

duot'd COlliprt,ssor elticiollc_v)
Overspeod .......................

Tonll)tTai ii!'? dilVr-

i,ii(!{! ;ll)ovt! norlllai

lllaXillllllll

(_all lie VOl'V gl'O:tl._ _

(_:tll lit! "eel'\' al'tqll_

Moderal,._ t'o great_
(_,'_n be _reat ......
Model'ail ............

Moderate to groat_ _-

Prot)atllo sti'es_ ])ur:ilion

Vvry low_
Lll%x_ _ _

Lmv 1. high _ .
lli_h _. _
1[i_h ....
]ti_h ....

Mi)deraie to gre<'tt_ .... lli_h ................

Short tf_'w s_,c)
Shorl flow st,el
Short (few sec)
Short (fvw set*l
(_ttil |)e loll_
M.dl'rale

Slmrt

curs during hot stilrls, when the stresses 'u:e low,
and dui'alion is shm'l, l/e('auso most overtenl-

l)oraiul'e is of short duraiion lind because the

I)ucl_ei etlses follow changes in _llS |eliiperature

Inore d.sely lhali the niiddle of the bucket does,

llie edges will Sllfl'el' nlosl danili_e. )t.s indicated

in ti_ure ;2;2, il is l)rollal>le lMl lle<'i/use of lhe

lag of the nliddiord section only lhe edges will

I)e overheated in Iransieiit orertenil)eralures that

ocelu' when the lnMcet is initially lit low lenil)erli-

i ilre.

The effects of OVel'teliii>eratllro eli buckef_ lnll -

lerials are

(1) hi eonli)hlalion with high stress, Io use up

a lal'Se l)arl of lhe life

(Q) To dltlliase file nletalllu'Sival slrllettlre

(reg'u'dh, ss of stress level)
(3) T<> in<hioe therlliit] stresses if the over-

leiiliieratllre is a rapid tral/sieli{

The nia/llitll(le of lhe dalliage is;, of Oollrse, a

funelion of the slress level dul'ili_" the over-

tenll_erilture, lhe niagnilude and dur'tlion of lhe

overteiiilleralure, and the 1)ilC],:et aHoy used. With

the l)resent klioWled_2"e alid dala oi1 lids Sllbjeet,

however, it is llot COl'lain what dalliaSo to the

buckets has resulled froiu a llarlii'ular m-ertern-

l)el'allll'e (:()nllili()ll. noF iS it: l>Ossil)le t)y exami-

nati())a ()f a M&ei lo stale (hat neither over-

(eml)eraiure nor dluna ,'e hits occurred (re|. 9)

The sensitivity of siress-rui)ture life to ten>

peraluro dt,s(.ril/ed eal'lier is indicalive of tile

dalna_'e liial liiav reSlllt wheii ovei'leint)eralure

o(q'llr_ while the hueket is nt high slress levels.

()verteinper'tture thai ocellrS ev011 WllPll stresses

liro low, as during it hot Sillrt or mall whih; no-

celeratin;, lllaV CallSe d'un'/¢ro that will shorten

bucket life. Many <if lhe alloys used for tur-

bine buckels aeliieve lheir properlies by it heat

lrea|lllent consisling of it solution treatlllent lit

leinl_eralures of the order of 1950 ° 1o °150 ° F

followed by 'in 'lging at temperaiures of 1350 °

to 1(;00 ° F. The aging forms a llreeipitate ill

llle niierostruciure llilll hardens and strellgthens

lhe alloy, lle'lting above the aging temper'tture

(!IIIISeS the preeil)itate to be aggiomerale(l (over-

l/gel1) or re(lissolved, 're(l, in IllaliV eases, the

alloy to be we'lkened. T]le alliOllnt (d overaging

or re-sohil ion increases with increases in tempera-

lure and little lind alloys differ in their suseepti-

1Jiliiy to damase, lly overaffin 7 or re-sohition.

St||dies are llndel'way in several ]abor'ttories to

_iitili fllrlher insislit inlo this problem.

RECOGNITION OF OVERTEMPERATL'RE DAMAGE

Overteniperalure can be so severe as to melt

or bllrn the buckets, or to CallSe Wlil'l)illg > or,-%ck-

ing, obvious stretch, or fracture. For some al-

loys, the occurrence of overlemperature causes

dian]es ill the lnierostrueture. This is shown

for overlenil)eralured S-,ql(i in figure _05(b),

which shows Ihat 7r'/in boundary preeit)itales

have been partially redissoh-ed, eonipared witii

'in ulidalna_'ed siruoture in figure 25(a). For

some alloys, ]mrdness ]s changed markedly by

re-solution, and such "t change nrlv indicate

danlase.

It is llo_sil>le, however, lhat dalllllS"e lllav oc-

cur :ill(1 not: 1)e revealed by any known lost ex-

_'ellt cult in,?_" lest sl)eciniens fl'oni saniple buckets

and runnili 7" lal)oi'atory tests s;uch its s;lress-

i'llllilll'e {'refs. f) to 11). Because of this diflieully

in doterniining whether overteniperatul'o has oc-

curred, ii is desiral)lo lh'tt "ill engines be equipped
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with inst runlents to record en_£ine sl)eed and ten>

perature :is a function of time.

Severity of the overteniperature problem will

be reduced if buckets are designed for very long

stress-rupture life and niav be reduced I_y

ehan_es in alhlys, lail clmlrols should be devel-

ol)ed ihat will avoid lhe situaiilms where dan-

gerollS overtelnperaI Ill'(*s occur.

IMPACT

Fnihlre stalislics have l't, vealcd lira! buckets

'ire frvlluenlly dan]aged lty impact. The sources

arc l'orei,,_'n oiL]eels, paris of other engine com-

ponents (sueh as the eomlmsiion liner and nozzle

(a)

• " ' " .) " ./ %''" o
"'., ..," ""2.. " , .e.0":, -,;: -,--x

:" : ; V2 m ""D •

.: .... -.,
_' .... "-"" "'." .. "i ' ",-'"-J °--°
,a o o -,., 0 _ .. ._

" ,d o
G

.... .
- ,_.._._ . ._-,_ "_ _ o o
"-"_ o ,'7_.. "_ ' " o o

(b)

(ai Staildard h,'al Ircaln,,,nl: 1 hour :t! 2,150 _ F. w:ller-

quc!nchin_: 16 hours al. 1,4(111° ]", air-coolil,,2..

(b'l St,vcrely ovortotnperaturcd (15 nlin :it 2,000 ° 1") for
]oxxin_ >t:tnlhtrd ]IC:II tl't'ztttl/t!lll.

l:l,;I tIE 25.- I'3t'vcI IIf OVIq'll'llal)('l'tllllFO (Ill Illit'l'(lsll'llt'[lll'(_

of S -S16. X 1000.

vanes) that have failed, or parts of buckets tllat

have :'ailed. Alloys eurrenlly used nlay suffer

impael severe enough to e'ulse fraelure (lifts. 1

and 2). More eomnionly the result is dents,
gou_'es, or nicks on lhe airfoil ]hat acl as nolehes

in tlm surface causing slress eoncenlra/ions ]liar

accelerate fatigue or stress-ruplure failure• I)eplh

and sharpness are iml)ortant notch variables. As

was discussed for thermal-stress eraeks_ lhe rate

of pro!)a_ation to eoml)lete failure (from "t notch)

depen(ts upon the safl, iy facim' in the buekel, the

nlagni:utle of vibratory stresses, and notch-rup-

ture properties of the buckel alloy.

The subject of noteh-rul)ture _ naenlioncd ill

chal)ter VIIL is described in sonie detail in ref-

erence 12. The effects of notches on fatigue are

well l_nown. The high lwot)ability of impact

(lamas,' I() rotaling buckels n,akes noteh-rul)iure

and n(l('h-fatigue properlies iniportant in ('hoes-

in,,,," 1)u q_et alloys.

In l.:'eneral; nolehes will not cause immediate

failure, th,ckets nmst lie insl)eeled regularly for

dallillge, '/110 notehed bu('kets niust be reworked

(to reduce note]l shar])ness) or repla<'ed. Ins])e(!-
1iOll ]iinils lhat esiall]ish standards for bucket

rewort, and replacenlenl lliilSq lie sef.

VARIABILITY OF IIUCKET LIFE

Turl,ine buckets of a single wheel will difl'er

considlq'ably ill linie to faihu'e. This is demon-

sll'alet: ill tigure 26. .%_total of 46 turbine 1)u('k-

ets (if lie Sallle nialerial flw a ,.riven engin% ,'hi)-

sell at ralidolll froln Air Fllree stoek_ were

inslall,.d in a iur]fine wheel. Tile engine with

lids w ieel was operated ColitilnlOllsl3_ at full ell-

_'ilie ])iwt,r liiitil 't lmcl.:el failure occurred. ()p-

Ol'aiiol Was eonlilllled, willi (,ac]l failed bu('ket

lit']ilK rt, lilaced, until all original buckets had

failed. Figure "26 is it plol of llUnl])er of original

Imcl.;ets faih, d ;.(_aillst time at fill] ellKill(, l)OWei'.

The lii sl fai]ul'e occurred afler 1SiI hours alid ]lie

last lifter 5[0 holll'Sr a sl)read ratio of 3:1,

The data (if li_ui'e "26 also :indic'tie lhilf l]le

t'ailiu'v distl'ilmtil)n of lhese lurbine bltekels is of

the "w ,ar-out" tyl)e dismissed in chal)i er l I. Thus,

after the first lm(-kci had faih,d, ilthtitional fail-

Ill'US f)llowed shoril.v wilh lhe l'llie of failure

increasing with time. For lmckels of t]lis kind,

after t11e first buekei failure ]las occurred, addi-

tional ])ll¢'],:el fltilul'es ('all be exl)eeied at very
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Fw, tmE 26.--Typical di_tribulion of lurbine-bueket fail-

ures. Forty-six buckets in one wheel. (Data from

ref. 18.)

short time intervMs and the wheel should be

eqlfipped with all new buckets.

SOME FACTORS AFFECTING REI,IABILITY

Consideration of several factors in desiF4n , pro-

duction, operation, field inspection, and overhaul

may help to avoid buekel failures, or at. le'lst to

reduce their frequency.

DESIGN

It i._ imporlant that turbine buckets be de-

sizned fin' very long slress-rupture lift, for at

least two reasons. One is that impending stress-

rupture failure eammt, be detected by inspeelion

melhods (wilh the exeeptiml thalL: elongation may

aid in some rare cases); t]ms 'tssuranee that

.<tress-rupture will not occur must rest oll the

design. The sec()nd is that lm/_ stre._s-ruptm'e

life will reduce susceplibilily to fracture from
cl'ac]¢s introduced by other eallses Sllc11 ,'IS illl-

l,Wl, lherm'fl fatigue, and mechanical fatigue and

_usceplilfilil 5, io dimr/ge by ovel'sl)eed and over-

en_l)el'al life.

Lm_g stress-ruplure life e:m be ,whieved by

]OWel'illp,_' lOlllllel"/|lll'O oi" St t'ess, Of ('Olll'Se_ o1' ])V

using' a slronael' alloy. Coolin_ of lhe tm<'ket

wmdd be benetieial if u_ed to ffain a large safety

['m't_w. Fro' example, if an eno'hw were <lesioned

with it centrifugal stt'ess in It lmllmv S-St(; bucket

(,f _(),(1(1t) psi and a lemperatm'e of 1500 ° F, the

,ime t(_ rupture slu)uld I)e at)out-t10 hours (fi,a-

4). If this Imcket were c(>()led o_dv 2(lit: F, a

tremendous safety feeler in stress-rupture would

l)e realized. If, however, the zas lemperature
and t)ueket slresses were such that the bucl_et

must be cooled to achieve s,ltisfactory lift, me-

eh:mie'd failures of the cooling system may h)wer

reliability.

Fvery effort should I)e made 1o reduce vilwa-

tory sli'esses to s:ffe levels. Since the designer
e:um()t l)e sure that serious vil)ralions will not

be en('o,mtered, it is important that tim new de-

signs t)e given long en(luran(!e runs (several hun-

dred h(mrs a! exl)eeted service operatir, a condi-

tions) in test stands to see if failm'e oeem's and

to in(lieille typical faihu'e mechanisms. Endur-

'race lests of lmekets on an accelerated cycle (5

rain at idle and 15 rain "it full thrust) in NACA
sell-level lest stands 1"1111on four models of two

engines dupliealed the major mechanisms of fail-

ure found in engines in serviee. _Vhen a new

eno'ine is introduced into service, it should be

inspe,'ted at short inlerv'ds for indications of
faihu'e. If failures are encountered, immediate

slel_s _m'h as those indicated in the secli_m (m

fali,,2,ue should 1., lal,:eu to reduce Ilw vilwalorv

stresses or to inllwove llw ability of the I...I.:els

1. ',vilhstaml llw blresses, lsually, fatigue cvack._

will propagate slowly if tlle bucket has been

designed for long stress-ruplure life.

In Ilia case of thermal-fatigue eraeldn,.z, re-

search is required to provide design criteria. If

stress-I'uptm'e life is very lon_ and vibratory
stresses "ire low, ]]owever, tl/el'ln_l]-stl'eS_ (_t'acl(s

will l)ropagale slowly, if al all, and may l)e
fom,t in s('heduled inspection.

(_onlrols |o 'wold overtemperature and too

l'apid teml)el':dure ehanges sh()uhl be investi-

_a'ated 'rod insialle(l.
I f t)ueket failure occurs, it is less (l,m_erous in

a sinTh,-sl:U_.'e lm'bine |hen in '/ multisla,_e, tur-

him,. In ;zenerid, however, for the s'mw appli-

cation it is usually possible to achieve lower

stresses in '1 lnullislage lurl)ine, and the lwol)-

al)ilitv flw it 1)u('kel failure may he smaller.
.\n ex:mfinati(m ,)f qeeident re,'ot'ds in(liea|ed

lhat serimls (lama_'e oe('urs when a failed bucket

fragment l,,(.()mes jammed l)etw(,en the .qn',)ud

t)aud and tim lips ()f the ()tlwr lmekets (as was

lhe ease f_)r lhe test el/_ine shown in ti,_. 1).

l)r()visions l. permit the fr_._ments of failed



132 'I'I';CtINICAL REPOHT l't 54--NATIONAL AEH()NAU_IICS AND SPACI- ADM1NISTI'IATIOX

Imekeis to be thrown clear radially so they will
not beconle j'unmed in this manner or cause

danlage downstream in muhistage turbines should

be studied and installed if possible. In NACA
tests of bucket materials, it has been found nec-

essary (o redu('e the turbine shroud lhickness to

a point where bucket fragmenls will easily pass

through so the remainder of the test buckets on

a wheel are not severely danla/e(1. Shrouded

lmckeis may be an advantao'e in this respect

becallse they (lo llOt nPe(l a heavy shroud band

to maintain tip clearan<'P. In an airplane, failed

buckets must lw e'q)tured in an area beyond the

lilts to |)l'olect the airplane from ttyinK fraKments.

MAN UFACTURE

Many ,if tiw steps used in the m'mttfa,.ture of

turl)ine 1)uckeis ran <'ause variability and influ-

ence l)rol)erties of the material. For example,

(-hPnli('al C()lnl>()sition and forging and heat-treat-

ing temperatures influence slress-rui)ture proper-

ties. 1)r<>ce(htres used (o finish lPa(ting and trail-
in K e(l_es can affect the amount (If residual

stresses ill (henl an(l lllay l)ossil)ly ('han{ze bucket

resislan('P lo crackin_ by thermal fatigue. It is

al)parent lhat before a new nl)tmtfacturino - proc-

ess ix a(h)l)ted , a nmnber of lest buckets should

be fal)ricated and carefully evahmted to ensure

lha( the process will produce 1)u(-kets with the

required 1)roperties. After a l)rocess appears

salisfactory, close control of the process and

quality is ne('essary. Even lninor changes in the

mamtfacturin_- pr()rPSS shouhl be c'u'efully eval-

ua(('(l It) ensure tlml (hey lie not impair qtta]ity.

Measurements f<)r the ('onlrol of quality must |)e

lath)tell (<) the mPllm(l <if l)u(q,:et fal)ri(.alion, that

ix, whelher (he l)m'k('ts are for_ed or (:ast. In

(,ithPr ('ase. ('()nlr()l l)eg'ins with ihP l"tw maleriftls

t,s(,(l in l)ro(hwin,..r the alh)v ('Oml)osition and ends
with mcasm'Pments (m tile llnislle(l bu('kel.

l)is('ussi<)n (if the l)r()l)lem (if inspo('tion of ma-

lt,rials :m(l (i)lish(,d l)u('kt,ts is l)Pv()n(l thP s('()l)P

()i' this (taper. l-_ast,d <in a knowle(I/e of how

l)t)t,l.:ets f:tiI, h<)wevPr, some suK_Psli(ms are of-

f(,re(l as. I<) (lit, kin(Is (if stre,g'th tests (hal mi:...dlt

I)(. im'lud(.d in insl)e('ti()ll.

llP('ause l)r()l)(,r(ies <if l)ttt'l-:t, ts may vary with

lin)e of l)r,)du<'ti<)n (i.e., fr<)m day (o day) its

well its with alloy ]leat Jet'Olli which (lie 3" are

made, linishe(l l)ut.l.:PtS h)/ically shouhl lie sam-

|)led <in l)()lh l)ases (<) ensure (luality. I( wouhl

be desirable to run Oil the sampled buckets all

(('six, _.uch as stress-rupture, me(-hani('al and ther-

mal :'all/uP, an(l notch rupture:, ]-:hewn to be

impolt'tnt to bucket life for the particular engine.
Sttrh exlensive tests may not lie l)r:tctical, how-

ever, i)ecause they are Ioo (lifticuh and lime con-

sumi)_. A minimum requirement might be a

stress rupture test of "2 Sl)e('imen taken from the
'tirfoii. (A saml)le fr<mt the root cannot be

expel: e<l (o represent ('ri(i('al airfoil l)rol)er(ies.)
The lest temperature should lie ('lose (o (he serv-

ice el)vironment, l:sually relalivelv short-lime

tests :ire desired (o <'u( testin_z limp, lalt they

shouhl l)e llSP([ ollly lifter it ]las been l)r()ved that

I)assit_ the short-time lest will ensure neede(1

lon/-timP life. ()he tPst cannot lie exl)e('ted to

measure properties all across (he airfoil and ad-
diti(m.d checks must lie c(m(hle(e(l. F<)r exam-

I)le. lm renmins of the 1)lwket after removin_z
lit(' tP++t sl)e('imen can lie checl,:ed across (lie chord

and aton_" the span <if the airfoil for _'rain size,

mi(q'ostructure, internal defP(qS, an(1 hardness.

If an engine is encountering a particular type

of failure, such as lea(lin_-P(lgP tllermal fatigue,

addili-mal (Ps(s of (his i)r()l)er(y should tie in-

trodu(e(l to ensure maintainin_ the lies( l)ossil)le

qualit: in this criti('al area. (,omplelely slttis-

fa(qmv lesls <if resistance t() ihernml fatigue

short of ol)eration of the l)u('l,:et at conditions

exactly dul)lica(in _ engine conditions are not now

know( anti (.onsi(|eral)le study will lie required

I<) set u l) stt(:h a test.

Th( evaluathm of creel)-rul)ture l)rol)erti(,s from
a spe( illlPll cltl frolll ('ast-l)uckel ah'foils ix usu-

ally (If quPstional)le value l)P('aus(, <if (he inher-

('nile lttr_'P _t'ain size of tastiness. If a lest

sperin_en has 15 to '.2)tt_railts ])Pr cross settle1L

the s l) '('ilnen may lie rel)rPsentalive (if the Imcket-

nlatPr al pr<)l)Pr(ies, l)u( (he small sl)e('imen that
might lie ('ul l'r<Jm a ('as( Im('kc( airfoil fre-

(lUPntlv)nay have only one or (we _rains in its

('r<)ss _e('li<)n. +k sta))(lar(l l)rtwti(+e ix to east a
test l)ir in em'h m()](l with the l)u(.kets and (o

test tip l)ropPrties (if (])is sl)e('inlen as rel)re-

st,nlat vP (if l)u('l,:Pl l)r()l)erlies. ()(.(.asi<mally (his

bar is l)]aced in a l),)si(i<)n i, (he mold (usually

the ('tnler) where it does n()t (.<)<)] at the same

tale :_s the Im(qiels. Thus, (he _'rain ,s'-,lz( and

strll('l ll'P ('till differ from those (if the |>u(q_ets.

(']m))ues in the castilJg' l)rocess may all'eel the
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bucket l)roperties without affecting those of the

test sl)ecimen. Ill some cases, a thin wire of the

casting material is cast in a mold along with the
buckets. This wire nmst bend through a speci-

tled an_zle to indicate accel)table ductility of the

buckets, but it m'w not be representative of the

lmekets. For example, the mold design can be

sm:h tlmt dire(,tional coolin,d of the wire causes

it to 1)e a single crvsla] with high ductility that

does not represent bucket properties. Careful

laboratory studies are necessary to be sure that

test I)ars made I)y a parlicular casting proce-

dure and mold design are representative of the

buckets l/roduced before the bar is used in quality

control. If the mohl design, casting process, or

alloy COml)ositi()n is ('hanged, this study must be

repeated.
V'lriations will el!cur on a time basis in any

production lWo('ess. A minimum of scatter might

be exi)e('ted from paris made in succession. To
minimize statler of bucket lives on any one wheel,

it would be logical to assemble buckets onto any
one wheel in ille chronolo_zical order of their

prod,,l('tion: at the least, it would be preferable
not to n,ix heats of alh)y on wheels.

OPERATION

Bu('ket life lms been shown to be related to

various factors in engine opera/ion and there-

fore may be improved by a control of some of
these factors. Some suggestions follow:

(1) Im'reased efforts should be made to ensure
avoidance _vf hot starts lhrou_h pilot training,

developnwnt of improved startin;z methods, or

development and installali()n of autom:ttic COll-

t rols.

(_) l:lmecessarily ral)id accelerations and de-
('eler:ni.ns should be avoided.

(3) Full 1lower sl,mhl be used only when

llecess'lry.

(4) ('auses of overleml>eratm'e sl_(luhl t)e iso-

lated aim ll.,se ol)eralin _" con(lilt.as sh()uhl be

avoided or (.onlrols to avoid their o(.('urren('e

_l,)uld lw devehq)ed and installed.

Instrumentati(m sl,mhl be provi(h,d to make

(,()ntinu()us re('(n'ds of engine speed and ,_as telll-

peratnre a_ainst time. Important ol)eration vari-
ames wouhl then be known. These records wouhl

show the amounI of time at full power, the

alllOllllt of time and I]lP telnperattlre at over-
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stress and overtemperature. They would also
show the number and the severity of acceleration

and deceleration cycles, starts, and stops, and
could be used :is a basis for scheduling replace-

ments and special inspections. (All these data

plus a history of bucket failures and replace-
merits would be very valuable as an ilnproved

basis for design criteria.)
17ntil such an instrument is provided, the pilot

_houhl kee I) records of lime and temperature at.
maximmn power, the nmnber and severity of

overteml)eratures and overstresses_ and number of

flighls (assmning a correlation between a mml-
1)er of accelerations .rod decelerations and number

of flights).

Adequate instrumentation should be provided

to enable the pilot to monitor the temperature

'rod engine sI)eed set by the automatic controls

at maximum power setting. This provision will

l)ermit hinl to make corrections if the automatic
control drifts or otherwise perinits operation at

too high speed or temi)erature.

FIELD INSPECTION AND OVERHAUL

Buckels should be inspected at regular in-

tervals for (:racks, warpage, melting or severe

s(.alin_z, excessive elongation, nicks, and dents.
Although 'it some later date it. may become

eviden| thaI some cracks (e.g., those resulting

from thermal fatigue in a particular engine) will

never propaK'm' to failure in the normal life of

the enKine, present practice shouhl be to imme-

diately replace lnwkets having any of these in-

dications except nicks "rod dents. In some cases,
nicked and dented buckets may be reworked to

ira.tease radius in lieu of replacement. Simple

visual insl)evli()n for ,.racks is inadequate, and
aids sm'h as ttuores,ent 1loner rant fluids and pow-

ders should be used. The frequency of inspection

will del)emt upon tim severity of operating con-
(lilt.as aml the pasl records of faihu'es with lho

lmckels.

In some eases, cl'a('l,:s l)rol)agate so rapidly to

complete fracture that rcl)l,wement of ct':M(ed

1)uekets (luriniz regular inspections will not fore-

s_all bn('ket fracture in flight. One such ease is

bucket fracture by stl'ess rupture. The current

l)ra(.qice in regard to stress-rupture failures is to

replace eqch bucket :is it fails. This practice
shouhl 1)e refined by replacing all buckets on the
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wheel when the tirsi fails bt+causit', a.s indicated

I)y figure :2t;, when lhe lirst of a sample of buck-

ets fails by slress-rupltu'e, faihlres of the re-

niainder will follow shortly. It is not tlesind)le

to allow even itme bucket, tie fracture by stress-

rllpture, however, because this results in a high

risk of tli,,zhl aceitlent, parti(.uhtrly since a pieit't'
of the bucket of the order of one-half the air-

foil has been releasetl. Although lhis priwodure

has been used. in singlo-slage turbines, il is not

l)or]nissildo for mullista_zo turbines because of

the g'reatly ini'reased likelihooil of a serious
aociih, llt.

If lhe l)ucl_t,lssll<m" large ehm_zation before

ft'ttt'ttitt't', l)oriodi(' nteasurelnent of ehntffti_tion

IIII/V 1)e helpful :ts :t l'ephtcelltOllt criterion.

In athliti<m, a svstt, in for scheduled rel)lace-

nients l)ase<[ im the lime al v:trious oporatinv

oontlitions an<l the ._tros_-rupturo lir<q)olqies of
the Imekt,is shmthl be w(n'l,:od out.

Thte :uhlil ivo ett+oels of stress-rupturo eondilions

nre not chmrly understood. For ex:unlAe, if 50

liorcellt (if tliit, lift+ expected tit one stl'ess anti

loll/l>Ol'iltlll'O lltlS t'lal)setl, lho I)oreent of life re-

nlainit_,,,_ at slnnt, <>lher strl,ss and lenilleralure is

not l,:n<)wIL tln the Imsis of stress-rltl)lUl't, lift +,

lit)we'<el', the l illlP lit lllliXililllilt l}OWof i9 go i/llll'li

more imp_wtan{ llian a it'<)rrt,slmnllin ff tiuio ni
oruiso that tllo tiliie lit cruise i._ not of serious con-

eern. A slig'ht adjustnwnt in tinlo 'it nmxinnmi

imwer wlmhd pritfimbly conipel>ate 'tdequately.

For eXamlde, the huok0ts of one ongine (C, tiV` 5)

slumhl ]lllVt+' tl life of 90t! hours at. full erie-the

lmwer. If the engine were oontimlonslv operated
at. cruise tilt, lmcl<t,ts shouhl hlive, because of low-

orod stress and tenll)eratltre, a stress-rupture lifo
of .t6.0()0 hours or aO times :is Kreat. An al>l)i't)x-

iliiale forniuhl for replacenienl i inle niiThi t iioro-
fore I>t, wm'kt,d m.t u_,inff Iili/O fit, full l)ower
less lilt, utilized fraciicln of life used lit <q'uiso

(if desired) plus il safety faetoF |i) t:/ke ]lilo

:icC(Hllli l+Vt,l'iOlili)el'a|lll'e, <l_tq'Sll't_ss, and wlria-

lliliiv ,_f l)lil'I,:t'l ])rol)orlies. 'I'll :llildy tills for-

nmla t'_>t"roldauontt,nt (If thickets froni otmsith, i'a-

ii<uis <if stre+,_-rullluro, ii wmihl be (lt,_;ii'allio to

]l',lVt' tit dt,vi,'o I<_ l'ei'(il'tl Oll_'illO gOt'oil 111111titqlll)/el'iI-

llli'e llg+ail/sl liillO 11>4 lll't+X'il)llS]y do:cril)ed. __tll-

ill]lot" ]ll'aCii<>o that IIitlv t/ill is l'ellllixal <if 11 bllf'l<of

fl'l)lii lho en#'inl,, ni..itchinin_ a _l)t'c]lnon froln lhe

airt'liil, anti slross-rti]liiirt' tt,slinp," il l<l indi<'ato

llnigi ilude of life i'Olliliilliil_. The renminder of
lhe nt<-kot can be c]lecked fro' indications of

surface damage (severe ilHer_zr:itmthtr corrit)sion,

etc.).

lit cases of nm(!hanical faligne v<llel'e ilie t'i'itl'ks

llr_ip:igate slowly (e.g., radial lip cracks ill some

('lises), the bilck+ets illtly lit, roidlu.elt llSill_ tile

I)rosouco of crlu_ks {is It criterion. It', t/s is iilOFe

C()lllllli)li]y tile Prise+ l]iey ]lroliaffalo rapidly or

inctmsislently, it is inlperative lhttt lho vihrttlory

slrosH, s lit, re(hl('e(t: lie SOUliitl 1,1isis for workinK

Olll i',,i)ltloenielit schoithih's exists. Flight faihu'e

Cllllll<,l lie avoideitl by inslioclion all)lie.
In lhe case of thernial-faligue (.ritcks, if the

t,nffil:o is tlesignetl fit)r ltnit K sli.o_s-rul>lure life

Itnll if vibrlllor?: stresses ai'o low, l]io cracks will

lll'()pti]titO slowly l/il('l l'elilacoilliqlt, i)ll lhe l)t/s}s

of olaol,:s alone will l>e satisfactory. If lhoy

lli'cIptti_'att_ very rapidly, il will lit, ]R'l'illlSe Of

Slll)itq'inil)osed conlrifuwil <it' niechanical-fMiTlie
hmtl. I1i this case, "is s.mi as olie cracked llucket

is ft) llid; all lnuq,:ets eli tlle, w]leel shonhl 1)e

ropla.:ed to redllCe likeliho<)d t)f aocidont. Ef-

forts silouhl 1)e direoted lownr(] re<hicin_ lhe

cOIIil'ifll_11] Oi' vi]_ral<)i'y stresses in order to slow

lhl, 1)'(ll)a_:ilioli l'al(,, oF to o]ilninale the l]ierliuil-

faliglo orackin K sinct,, a_itin, it sound lmsis for

sched i]in 7 l'O|)]aceliiOlitS is ]loi avai]all]e.

Ill ivel'h:llll, lhe prilotico of 1)()olin<7 or liiixillg

]lucko s frolii seVOl'lil ell_inos s]ioiil<l 1)o avoided,
SiliCO l]iis niixos lm+'kels luitvinff lonff life re-

niaini i 7 with lhost, haviii 7 short life reinltining.
]/ecl/1 so l]ie first lllw].:ol faihire Oil ('aeh wheel

lil;l'l." i tlllSe all lnickois io hit,rellla<,it+d or (Ill,ilia,To

lho a rll]ane, niixin_" lmckt, is lends 1o nlake all

Olig'ill,'S tiS }Uiit| aS i]lO WOl'Sf.

BENEFITS OF ENGINE DERATING

'|'}H oxt I'Ollle sonsiti vit.v of IHl('l,;el sl rt,,_,-i'iil)l till'l,

lifo l+_ ._ll'ess and |olii]leralllre (li_'s. 4 t/lit| 6)

_li____,q-ls thal if tile ltilckoi >,tross-i'Ultture life is

i()() S]l:>l't, ii liiliV lie illcrt':itsitql 1)v Jewel'ill 7 Sll'ess

til' iolli])erailll'O o1_"I)oth, lhat is, tlv d[,raiin 7 the

on_int.

|i i. inll_orilliii to dolerniiiw wluli sm'rilices ill

el_,.z,'im thl'ust nlivht rvsllli fronl ih,l'alin-', al.l

how s )t,cific fuel consunllHion nit,lit hit, all'coted.

(_nlcll]al iOliS nlade for :t Sl_t',iii(' eli_ilit, lll't', sllo,,vll

]1/ ti_lll'/e ".2)7. Taillfil)O ill'Oil X\'tiF,varied lo opti-
mize ,-alch condition. (gn'ros shown for three
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FICURE 27.---l';ff{,et of _,n_inc tit,rating on lhI'llS{,, _l}e{.ifie

fuel eon,sunlplion, and I)u{'k{'t slruss-rul)turl, life.

methods of derating in the upper part of this

tigure, indicate that, if the engine speed is re-

duced with temperature held constant, an S-per-

cent reduction in speed reduces thrust about 4

percent, and quadruples stress-rupture life. If

lelnperalure is decreased wiih speed hehl con-

stall{_ It 100 ° F dl'{}II ill {ellllteralllre increases life

•l]}out 19 limes, hut thrust is reduced 1}y 7 perce]lt.

Tlle {!llrves of l]tis series show that il is l}ref -

erable to reduce hath IelllperaIlu'e and speed if

this en_'ine is to he &,rated. If teull}erature is

re{hlced 100 ° F and speed 4 l}errenl, lmcket siress-
rupture life wouhl increase 44: times, while thrust

wouhl be reduced 6 1}ePcent.

The {hlta of the lower p'u't of lhe t]_zure show

{lie reduction in sl}eciflc fuel c{msulnption for the

deraiin g conditions just dis{'.ussed. Since 't re-

duction in sl}ecitlc fuel consumplion is desiral}le,

all deralin_ co]ldili,ms investiIz'aied were bene-

ficial. The condilio]l where temt}eratlu'e was

reduced ll){i ° F and speed 4: peree]lt wouhl im-

prove sl}eoific fuel c{mSmUl}li{}n 1}y 4 percent.

The curves sli.w thai, hi Kenera], deraiing" of

this engine ,ouhl aohieve _reaily incre'_sed

huoket si ress-rupi ure life wit h s.nle inqmn'enienl

in fuel ('_msunll>ti.n aud with moderate reduc-

tions in lhl'ust. The Sahib effe{_t is _ained t}y

liniitin_ operatin,_ tinie at full prover: lhai is,

runnin_ nlore {}f the lime at {q'nise {'ondiiion.

A wc}rd of r'aulion is needed :It lhis 1}oini. Thi,_

secliou luls slimvll thai 1,i{'ket siress-rtiplure life

7,;',411{i2 ¢;2 1{_
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might be improved by deraling. If buckets are

failing by stress-rupture, these data illustrate

_zains that might be made. If stress-rupture life

is inlproved, ihe buckets may then fail by an-

other mechanism, and all the expecled gains may

not be achieved. Also, buckets of some engines

do not fail by slress-ruphn'e, and for these en-

,_zines, all increase in life cannot be l}redicated

from slress-rupinre data as has been done in this

example. Each engine must be stlldied sepa-
rately.

ADDITIONAL INFORMATION NEEDED FOR IM-

PROVEMENT OF OPERATIONAL RELIABILITY

Turbine-1}ucket reliabiliiy will, {if course, be

lmnefiiied by /lie current efforls that are devoted

towards inlproving inaierials, methods of fabri-

cation, etc.

Lisied in the followin_ paragraphs is infor-

nntlion that will aid directly in improving tur-

bine-bucket reliability by providin_ specitic data

.r an i]nproved insight or miderstandin_ of i)rac -

t ical probh_nis revealed by service experience with

the im'l}o.iet engine:

(1) Additional inforniaiion is needed on the
effect of various am{nulls and durations of over-

temperature on the life of lhe m'/lerial when the

bucket is suhjecied to various levels and types of

loadin_. The influence of bucket-life period at

wlti{']l m-erh,nll}erature occurs mi_zht be studied

to determine, for instance, the relative impor-

lance of overhmlperaiures th,n oc{:ur durinK the

first, or second sta_es of creep. Early studies

shollhl duplicate conditions encountered ill serv-

i,'e insofar as is possible.

The l}ossibilily lhat heat trealnienls may re-

store ]nalerial-properly defieien('ies caused by

overleml}erature shouhl be sludied.

(2) Infornullion is needed to (lelermine whether

periods at various levels of stress and tempera-

lure in stress-rul}hn'e are ad(liiive; for exam-

pie, if g(} l}er('ent of the bucket life is used up

:it niaxinituu power 0onditions of slress and tem-

l}eraiure, d.es 40 percent ]'em'/in io lm used '.tt

some other condition, say cruise? ])eveh}pment

,f nlelhnds which will permit the cahmlation of

the perceul of life us0d at each nper'ltin_ con-

diiion will bad 1-a rational basis for schedulin_

_,f I,uclcet I'{'llJa{'Plllt'lll ill :lv.id stress t'lll,tlit'e
faihu'es.
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(3) Studies are needed that will alleviate

bucket cracking caused by repeated thermal

stresses. Reducing the rate of change in engine

gas temperature is an obvious step, but it is de-

sirable th'tt engines be 'tMe to accelerate very

rapidly. More knowledge is needed on the effect

of bucl;et material and bucket shape and an un-

dersiandints of tim relative intluenee of engine

cycle varial)les is needed.
(4) Studies are needed to isolate causes of

v'lrial)ility in bucket properties, for example_
whe|her bucket fabrication methods are the prime
cause or whether tl_e variation stems from the

h'u" stock or from metal heats.

(5) ,ks a guide in sclleduling replacements,
studies are needed on the rate of pl'oI)agalion of

various |ypes of cracks to complete fracture in

various stress and temt>erature enviromnents.

(6) Nondestructive methods are needed tlmt

will indicate (a) iml>ending bucket failure, par-

ticularly in stress-rupture and fatigue, and (b)

occurrence, of danlltKe from overtemperatures.

Properties such as electrical resistivity and inter-

nal damping might t>e studied.

CONCLUDING REMARKS

Air Force service records indicate that with

several jet:engine mo(lels, frequent turbine bucket
replacements are nmde because of lm<.ket crack-

ing or fracture. Buckets occasionally fracture

during flight. In engines with single-stage tur-

bines, lhe fragments from fractured buckets

are often ejected through the discharge nozzle

with no further damage and with liltle loss in

thrust. There is a risk associated with permit-

ling bucket fracture in flight, however; in 1953

out of Ot15 Air Force flight accidents attributed

to jet-engine malfunction 16 vcere traced to tur-

bine-bucket failure. In enta'ines with multistage

turbines, the 1)robability of ('atastrol)he from

failure of a turbine bucket is much greater. A

failed I)ueket in 'm early stage may wipe ()lit the

l)uckets in successive stages and stop or destroy

the engine.

Turbine buckets are subject to a combination

of cemrifugal stress, vilwatory siress, high and

ral)idly changing lentperature, and a corrosive

;Unmsl)here. Turl)ine Im('kets can fracture by

slress-rupture or by fatigue, or a comlfination.

Fracture can be accelerated by damage from

overtel[lperature or overstress, danlage or (?rill'ks

l'esulti_lg from thei'nml fatitzue or l)erlml)S from

corrosion, or by nicks c'msed by solid objects in

the ga:_ stream.
In gener,d, 1)uckets should be designed for very

lono- s, ress-rul)tm'e life, since no reliable warn-

in,," fla" stress-ruI)lure fracture exists. Long

stress<'upture life also provides a safety factor

that may reduce the rate of l>ropogation of cracks

from other causes. ;If t)ucket slress-rul)ture life

is too short, it can he increased by reducillg

bucket stress Ol" teml)eralure or both, |hat is. by

engine derating.

When excessive vibrational stress exists, it

shouhl l>e reduced to a safe value by design

chang( s stleh 'Is chqnges ill nozzle gemnetry and

bucket stiffening (inclu<ling bucket shrouding)

and I>_ bucket vii)ration damping.

With a very long stress-ruplure life and low

vibrat.ry stress, buckets can be l'el)laced when

dangerous cracks or nicks ,re found in a sched-

uled inspection or when the bucket has run a

design tte(l reldacement time based on stress-

rul)tul+ life with adequate safety factors (reduc-

tions) for variability in bucket i)rol)erlies and

operal <)n'd history.
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CHAPTER VIII

TURBINE DISKS

By G. C. DEUTSCtt and R. It. KEMP

SUMMARY

Disl_ fa_bo'e ;_ an ail'pla_w turbi_w can cause

;mmcdiate dest_'uctioq_ of the airplane; of the

vm:}or airplane aecide,_t,_ caused by the e,ngine

;_ lO.';3, 8 peree_t we_'e d_e to failure o.f ho'bine

di._l,'s. Echlenec of i_w;pie.nt failure i.s.frequently

/ound ;n the dh.1,',_, of e_gh_es being oveW_auled

.fo_' other reaso._s.
I'he .,'tr(ss and t(_mpe_'ature environment in

v'h;ch the disl,: operates is reviewed. A discus-

•_;o_ based o,n th& review,, is _nade of the possible

n,echanisms o.f .tailgate. Service experience is _'e-

,;ewed to show wh;ch of these meehanism.¥ are

1,'l_ou'n to have _'esulted i,n, faiho'es. The dlsTc

/ailto'es e_wou_tered in se_'vice u'ere fo,u.nd to
have _'esutled )&ore (I) te_slo.n in the serratio.n

area; (2) mdial cmddnq of the rim, particularly

at bacZ'et-l_tai_d_W pir_-holc,_; (3) fracture at the

weld in. composite d_sZ's; oJ' (_) failure o/ the

.,haft.
Two ,_ugffe.,t;o_s for avoMJ.nff flight failures

ace <made. Y'hcy a+'e fo_" desiq_ impro_,emcnts i_

the dLJe-cooUn 9 sy._tem and for scheduled b_spec-

tions to detent cmel,:s, abnormal gfou'th, a_d dis-
to+'tio_ in the bucZ:et-root area. The inspeetim_

._.ehedule for each disTe type should be based on

,_.ccvi<'e experh'nee "with the spedfie disk.

INTRODUCTION

The 17.S. Air Force jet accident summary for

1953 (ref. 1) attrilmtes 17 major airplane acci-
dents to failure of the turl)ine disk and shaft.

Of these, 10 destroyed the airplane and 3 resulted
in fatalities.

In order to recognize fully the effect of turbine-

disk reliability on over-all engine reliability, it

is first necessary to learn the types and frequen-
cies of the difficulties that lmve occurred in cur-

rent operational practice. If the reasons for the
difficulties can be learned, it shouhl be possible

to improve reliability of the disk. The causes of

disk failures will be presented by discussion of

(1) Mechanisms by which disks fail (In addi-

tion to fragmentation, failure is considered to
have occurred when defects arise that make

further operation imprudent.)

(o) Effect of disk environment_ (stress, tem-

per:m_re, corrosive media, etc.) on disk life dur-

ing both normal and above-normal operating con-
ditions

(3) Influence of manufacturing processes

(4) Influence of m,dntenanee
The awtilal)le knowledge of the disk life being

:,thieved in military operation is reviewed and
the mechanisms of failure are discussed. Sug-

-e_lions for achieving improved operational re-
t", '

liability are also presented.
Most mililary experience has been with single-

stage turbines; therefore this discussion will deal

primarily with t)roblems that have been encoun-
tered in single-stage turbine disks. Itowever, it

is recognized that current design trends indicate
increased use of nmltistage lurl)ines. The mecha-
nisms of failure that will be discussed apply also

to the disks in multistage engines; these engines

have the additional problem of being more diffi-

cult to inspect. Typical single-stage and two-

stage turbines are sln)wn in figure 1.

(o)

(b)

(a) Single-stage turbine m_gme.

(b) Two-sta_e turbine entire'.

F[.VR_: 1. -l,ocalion of I,urlfitw disks in lur't).jct+ ct+gin,.s.

17,9
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IDENTIFICATIONOFTURBINE-DISKPROBLEMS
SOURCESOF INFORMATION

Tlm service eXl)erienee with disks used in cur-

rently operatin,,Z turbojet eng'ines is of interest a_

an initial step in a stmlv of disk reliabililv. This

exl)eriem'e, lwin_ ,-.lelv military, may he different

from that which would prevail if the en_'ine were
to be used commercially. Therefore. exlension

of the available information to mmmilitary

llSII_ZPS lllllS[ [)P lll:ldC Cllll[iOllslv.

The avaihd4e SOllFCes (see ('11. 1I) imlicale that

(m'l)im,-disk malt'mmlion is only rarely respon-

sihle for semlinK lhp ell_'ille Io overhaul. Ihnv-

ever, upoll disassemlAy during" overhaul, as many

as 76 perceni of the disks in one en,_)in(, model

were found to have (h'fecis that could ultimately

lead 1o failm'e. It had been hol)e(l (hat (by(lush
a s(uily i>f tile inf()rmali()l) s()Ill'CeS i! WOll](] ])e

possible (o ascertain lhe l)resen( disk reliability
and also to establish a distribution curve for disk

lift'. This couhl not be ih)ne, however, since op-

eralin_ 1)a:es make many um'eeortled disk
changes, and there ave no data to indicate

whether disks were relflaced at l)ri()r overhauls.

The sources were very helpful, however, in
i)l(li(.alin_ (ha( a disk 1)r()blem existed and in

determining lhe various modes i)f disk faihu'e.

The gravity t)f cerlain types of disk failure is

illustrated in figure 2. in this case. (he disk

burst while the airl)lime was in flight. ('Olul)letelv
severin_ tile (all se('li()n from (he rest of the

airphme. The flour(, illustrlm, s the manner in

which the disk fragments tore the aft fueslage

se(,(ion, in the plane of the tul'l)ine wheel. The

renm n(h,r ()f the airl)hme crashed mid l)m'ne(l.

This exlmq)]e emphasizes tile importance of tile

disk in jet-eno'ine reliability aml indicqtes that

even a small percenta;ze ()f disk bursts i_ not
(()h,v:,l)]i,. Every reasonable effort must be made

to e)_sure lhat such failm'es (Io not occur, re-

gar(ll_,ss of the nuniber of engines in Ol)erati(in.

DEFINITION OF TURBINE-DISK REGIONS

F()c (he subse(luent discussion in (his report: it
is convenient to estal)lish a standard nomen-

clatu'e for the various (lisk parts. The fermi-

1200

800- Equilibrium at / /

rated c°nditi°ns-",/A_ /

/ /__--Transient at

_ /- maximum
kq 4C_D- / temperature

c 2C?-' _ e_ii:r 7e

i. i_ erration r

fhermocouple
-_ 2b-_ Hub

Iocefions

_Z_ [ I I 1 I I I I
0 2 4 6 8 I0 12 t4

). Disk radius, in.

FIGVR] :{. Tm'hine-disk t(,ml)(,rttlure at (rttn.qi(,nt .tn(l

('quilil)rium ct)n(lil ions.

],'mum,: 2. -Tail section of airplane that crashed as r('s)tlt

of turbine-disk faihm,.

nolog< use(1 is shown in figure 3. The terms are
as %1lows :

5er':ation region: The serration region is that

1)orti(n of the disk beyond the l'n'gest radius at

whiel (lie (lisk is crciumferen(ially con(imu)us.
The ._errations support lhe turl>ine buckets and

are al<o called the bucket-fastening region of the
disk.

Rim region: The rini region contains (lie

bucke -fastening region 'rod extends radially in-
war(l to where the thickness of the (lisk sut)slan-

tially dilninishes.

lVe) region: The web. usually thinner th'm
the rim. extends from the hub to the rim. In

comp(,si(e disks, the web c(mt'fins the wahl area.
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l lub: The hub is lhe central portion of the

disk. Ill imevval disks, tile hub is lhe axial

])rojcction of the shaft fin'.ugh lhe disk. In

_hmmuniahle disks, the hub conlains the bolting

circle, n.mnting tlange._, and so fm'th.
'l'hp lPl'III "lurbine wheel" refers 1o the luH)ine

di.-k :rod lhc bmket assembly.

TURBINE-DISKOPERATING TEMPERATURES

'l'hc tm'bim, dbk is homed by lira hot gases

llmving over the rim r by conduction front the

turlfine !mckels, aml by radiation from adjacent
hot paris such as the lailcone bullet.

('ooling air may be bled lo the central areas of

lhc disk from the high-pressure slakes of the

compressor (ti_. 4). This air exhausts through

lhe seals and balttes thai prevent the eombusion

gases from hmdverlenlly spilling over lhe disk

sides, in addition, the cooling air from the up-
stream faee of lhe disk tlows over lhe disk rim

and cools the bucket-fastening region.

Typical radial temperalure distributions in the
central plane of a disk cooled on both sides are

shown in tigure 3. The upper curve represents

com/itions at rated sl)eed 'rod tailpipe tempera-

turc, afler sulliciem time has elapsed to allow the
disk temperatures to become stabilized. There is

a lemlwratm'e difference 1)elwcen lhe hub and lhe

rim of about 620: F. This temperature differ-

encc and the shape of lhe cmwe are important in

delerminin V lhe stress slate h) which tim disk is

sul).jecled ; in gcm,ra]_ the gi-e,mw the telnperature
difference, lbe ga'l'ealer ave tile tlltH'lllal s|l'esses.

This relation is discussed in grealer delail in a
subsequent section of Ibis pal)er.

'l'h(. IllaXill|llIll difference belween lemperature

at the hub and ai lhe rim generally occurs
shorth" after the eng'ine is star(ed: rim tempera-

ture rises rapidly it) very near lhe operatinff

value, while the hub heats slowly as shown by

the lower curw, of liffure 3. A typical example

Coolingair

Boll

Roller be0ring-'

t,'muR_; 4.--Schematic diagram of disk eooling-air system.

of disk :is faro'lion of time afh'r ignilim<

Of this rclati,n is shown in tlgm'e 5. The engine
was acce]eraled at a rate considered normal for

jet-engine ol)eration: rated speed was attained

1 minule after ignition. The maximum tempera-
lure differcnee of 790 ° F, 170 ° F greater than

that at equilibrium, was reached 5 minutes after

ignition. The equilibrium temperalure differ-

enee was reac,hcd about o2 minutes after ignition.
In addition to tim radial variation in tempera-

lure of lhe turbine disk, there also nmy be sub-

stantial ,txial v:n'i'ltions. Typical axial gradients
in a disk cooled on both faces are shown in tigure

f;. These gradients were measured "_t rated speed

and tailpipe lempcrature after equilibrium had

been reached. Midway in the rim, a temperature
difference of 1-°0 ° F between the faces of the disk

can be noted. Such axial temperature gradients
are iront)lesome beeause there =u'e no estal)lished

i)roeedures for ('alcuhttil_ V lhe slt'esses they in-

duce: some mmertainty is thereby introduced in

computed stress values.

Thus far, disk temperatures during normal

starting and operation have been considered.
There are several con(liiions for which tim (em-

l>eralure _l'adie)ds may be higher than i])ese.
These conditions include

(1) Engine-st'trting at very high altitude. The

engines are frequently very eohl and the tem-

l)eralllre gradienls qrc more severe.

(9) Overteml)el'aiure oper,ttion of the engine.

Severe overtenq)eratures would be likely to c,mse

severe overheating of the bucket-fastening region

and possibly failure in this region even before the

temperature rose significantly in the web. Pro-

longed moderate overtemperatures could result hi

excessive overheating of the web area.
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Central plane

11o(5-

]:D;I t_.E G. "l'vl)i("d "txJal lelup(q'alllre gradients ill 1111"hilw-

disk rim.

(2) Operation of the engine with malfunction

of the seals and batttes intended to prevenL hot

gases from tlowing over the disk faces. These
seals are dittieult to desi(m bee,rose thev must

allow for the ]arKe unpredictable expansions that
occur in the turl)ine section. Part of the ditli-

culty arises because, in most engines, lhe ball

bearing that loc'm_s the disk relative to the frame

of the engine is h>eated at the forward end of

the turbine shaft, as shown in figure 4. The ,_xial
clearance between the seals and the disk is there-

fore eh'mged by tlm difference in axial expansions

of the turbine slmft and of the engine frame. In

one engine, this axial clearance change was found

to be apl)roximately a,_, inch. Also_ the normal

cyclic ol)eration of the engine causes a gradual

dislorli(m, or warl>age , of the baffles and further

decreases their elt'ectiveness. This wal.i)age may

merely decrease sealing effectiveness and alh)w

the hot _ases to flow over the faces of the disk,

or in an extreme ease it may actually direct lhe

hot gases over the faces of the disk.

Additimml tm'bine disk temperature informa-

l ion ix 1)resented in references 2 and 3,

DI_K STRESSES AND RELATED PROBLEMS

tIUB AND WEB REGIONS

Centrifugal stresses.--Although one of the pri-

mary !)url)oses of the turbine disk is to transmit

torque to tile compressor, the stresses produced

in lhe disk 1)roper in performing lhis function

are ilfluenced only slightly by torque. The

major stresses are caused by other types of load-

ing. ()f these, the primary ones are eemrifugal

forces, the thermal gradients just discussed, and

the lo:'ked-in internal loadings resulting from

eertai> steps in the fabrication process :rod from

the preceding engine operation. Measurenmnt of

these internal loadings is difficult 'lad not much
is known about them.

The centrifugal forces acting on the turbine

bucket:_ qre tr.tnsmitled lhrough the bu('ket fas-

tening mechanism to the disk l>roI>er, in deter-

mining the resulting stresses produced in the

dislq it is generally assumed that these forces =Ire

evenly distributed on a tlcliti(,us rim that corre-

sponds to tile continuous rim at lhe lmse of the

serrati_ms. The rim loading is delermined 1)y

dividing the total centrifugal fm'ces on the

buckets and disk segments by the circumferential

area ot the fictitious rim. The problem is thus

reduce( to one of a simple disk with a smooth

and continuous rim having" an evenly dis(rit)uted

load acHngin a radial direction. In additionto

the tin loading, roiation of the disk also causes

eentrifl_gal forces that act on ea(.h element of the

disk in direct I)roportion to its mass 'rod its dis-

lan('e f'om lhe center of rotation and in l>ropof

ii(m to llle square of the angular velocity.

The :_ssuml)t.ion is generally made thqt, at any

given disk radius, centrifugal stress will tie con-
stant f_om (me face of the disk 1() tim other. In

oilier _or(ls, in lhe compulation of the stresses,

a snmo hly faired disk profile is assumed that

will pe'mit even distri!mlion of the stresses in
lhe axi:l direction.

S", race qxial effects are assumed negligible, lhe

resul|in:z eompuied stress stale in the disk proper

is t)iaxial wifll the princil)al stresses occurring in
the rqdial and the tangential directions. For

illustrative purposes, the eomputed stresses due

only to the centrifugal force fiehl for a tyl)ical

tm'l>ine disk operating at its rated speed are

sh<,wn lv (lie dashed lines of fi_ure 7. The disk
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chosen had a l'im lo'uling of 11,000 psi and had
a 1.3i-inch-diameter hole in the center. R:tdial

stress is zero at lhe hole and rises to <t nulximuln

of 4()J)l)0 psi in the web region of the disk.

Radial Sll'ess at the rinl is lhe rim lo:lding of

11,000 psi. Tangential stress at the hole is (;2,0nl)

i).q alld decreases rapidly wilh dist'mee from lhe

hole. hi lhe web region of the disk, t'tngenti'tl

Sti'PSS iS }}S J)()() psi and decreases to o8,00i) psi at

the rini. l f the disk were solid inslead of havinK

a eenlral little, the radial and the tangential
stresses would have been equal at the center with

a vahle of about 35,000 psi.

Thermal stresses.--l)m'ing normal engine opera-
tion, the turbine disk is subjected to a radi'd

temperalure distribution as described previously
for the illustrative e:/se shown as the upper curve

of figure ,3. At equilibrium conditions, the rim is
(;20 ° F hotter than the hub. The riui lnateri'd

tends to expand to a m,w radius, but is restrained

fi'oni doing so by tlie ,.'(:,oh,r hub m'tterial. The

rim is theivfore forced into compression, while
tlie eenler or liul_ is forced into tension. These

elt'eels qre superimposed on the stress state cre-

ated 1Lv lhe eenti'ifug'al forces, and the eoml)ined

result is that shown by the solid lines ot' tigure 7.

The tangential stress at the hole has increased

from 6-2,n00 to 9g,001) psi, while at the rim it has

been eh'ulged from '/ tensile stres_ of o_q.00() psi

to a compressive stress of 68,000 psi. Radial

stresses in the web region of the disk have in-

ere'lsed from 40,01)0 to 60.000 psi with no ehilnge
"it the hole or at the rim. At a radius of 10.5 to

11.0 inches (the weld region) there is now il

rather sh'u'p break in the t'mgential stress curve.

This bre'lk is caused by differences in the coefli-

dents of expansion and Young's modulus for two
malerials of which this disk is fabricated.

The tangential stress 'it. the hole of the disk is

of ihe order of 100,000 psi. The approach of this

stress lo the yMd point of the materi.d does not

necessarily constitute it dangerous operating

condition. Materials that provide a substaniial

amount of center ductility are chosen so that
1)lastie flow can occur and can result in a retli_-

iritiution (if the stresses. Trouble may be en-
countered, however, if flaws exist lit the center,

since these wonhl reduce the 'd)iliiy of the Ina-
terial to flow and could result in a disk faihlre.

The etfeet of ductility on the strength of disks is

discussed niore fully in reference 4.

The stresses described can be computed by the
nietho(l described in reference 5 for the eiise

where the yield point of the disk m'tterial is not

exceeded, or referene(_ 6 ftir tim (!'ise where the

stresses do exceed the yield and plastic flow takes
l)lace. An extension of the method of referen<'e
(; can "dso be used to determine the residual

stresses that will be locked in the disk after en-

gine operation. Semiquantitative evidence of

these residual stresses has been noted during cut-

ting of the disks along it dianieter after engine

operation. As the cut reaches approximately 80
percent of the diameter, the cut "it the starting

point has been observed to open up its much "is

:_.g ineh. These residual stresses comMne with

ihe other stresses in the disk to produce some

regions of higher than normal operating stresses
and some lower. The over-all influence on the

reliability of die disk is not dear, since no col
relation with disk failures has been established.

S'Center bursts.--,_ mee the hub region operates itt

temperatures of about 400 ° F, design is 1)ased Oil

the short-time physical properties of the malerial

r'tlher than on the tinie-dei)endent stress-rupture

and cree l) t)roperties. Yield point of the ma-

terial is therefore used to determine llie proper

profile for tile hut) region (if ihe disk. lIowever.
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beeallse engine weight is influenced to a large

extent by the weight of tile turbine disk, :m at-

tempt is made to obtain the profile that will give

the lightest possible disk and yet be safe under

:ill ()perating conditions. Every 1)ossible precau-
lion ml,st therefore be observed to ensure that

the ('enter material has the design strength. Since

tit(, center is generally lhe thickest l)art of the
disk. it often does not receive much ineehanieal

w_wking during the forging process: it may
therefore contain defects such "is segregations

and porosity. These defects, which reduce m't-
lerial du('tilily, may cause a center burst with

valaslrophiv results to the airplane. Figure S
SHOWS a ('enter bllrst eatlsed |)v excessive ,ae_q,eo-,t-

lions in the hub .(rea. The disk was Sl)li! int()

tw() almost equal parts.

Because center bursts occur without w:mdng,

this lyl)e of failure can only be avoided by

l i_2hler vonlrols durin 7 the fabri(.ation |)recesses

and bv improved 1)reolwration il_sl)e('ti(m t)ro -

eedures, lml)roved X-ray, ultrasonic, 'rod pene-

tvant (ill inspection l)rocedm'es in additiml to de-
strllctive examinations on a sampling basis can

do much to eliminate the hazards of a center

burst. As a final ('beck before acceptance, it is

general 1)raeti('e to cold-sl)in the lmeketed disks

to a speed somewhat above the r'lted engine

speed. This practice assumes that the cent rifugal

stresses induced b.v the overspee(l will in effect

l"I(;um.: 8. Typic'd lurbin(,-(tisk bursl.

lake lhe place of lhe combined centrifugal and
thermal .,tresses when olwratin_r in :m en_'ine and

thereby lwoof test the disk. lh)wever (referring

again 1o the stresses in lhe typical disk shown in

ti7. 7 . it will Iw noted lhat it would I)e necessary
to in(rease the ,-entrifu_zal langemial stress from

62.0()( lo apl)r()ximale]y 11)0,0()0 psi to simulate
the c,)mlfined thermal and ventrifuTal c(mditions

at tl, di.,k (.enter. This increase w,mld require an

overst)eed of apl)roximalely 27 percent, which

woul([ 1)r_)baldy cause a failure in the outer re-

ffions of lhe disk, l)erhal)s in the lmdw!-faslening

area. (',)hl-slfin tesliw2.' ix lherefore l_erf,,rme(|

Ill ovq'sl)ee(|s of lh(' order of .) It) 1(_ l)ervenl and

does l(>l .-imulate avtual operalin_ c,m,lili(ms. A

coh|-:l)in test should Iw ('(msh|ere(l (mlv as :ul-

janet lo the ()lhvr insl),,('li-n Iwocedure.- an,l not

asa inal proof of relialfilityofa disk. It isen-

til.el 3 l)ossil,le that oversl)eed Ie:ting" can do more

harm than good. For examph', leo _reat aH

overs )eed may cause l()('alized l)lasti(" flow near

lhe r lit ()1' a| sll'ess COl)('elitra|iolls llear lhe ('elllel'

lwv:use ()f defevts p'lssed bv other inspection

meth _(ls. The spin test m'tv therefore induce
resi,lml stresses in the disk or cause existing

defects to be enlarged. In eilher case, severe

()vers-)eed sp]ll-i('M ink could reduce the reli'd)ility

of tl)e disk during sul)sequenl engine operation.

Fi_hl and overhaul nminten'mce 1)rocedures
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that may influence reliabilily of the disk ape dis-

cussed in a latt,r section of this ]'el}<}rt.

Web necking and burst.--The wel) region <)f tile

disk operates at highev teml)(,ratm'es than lht,

hub (tig. 3). For lhe typical disk shown, lhe

iemperaluPe is about 750 ° F at the wehl location

and al}Ollt 1151) ° F at the rim. In lhe design of

the wel}. it is therefol'e necessa]'.v to {letePmin{, for

each ra{lius wlletlwi' the s}l{}]'t-| i]ne l/hy_ical lW{)l_-

el'ties {}l' Ihe stPess-Pupture and cree l) properlies

are Ihe {'onlrolIinK design criteria. In a(hlitioll,

a sub.,t:mlial margin of safely nmst be incorpo-

l'ated t{) allow i'm' disk teml}eI'aiures hither lhan

llOl'm_ll l)e{'a_lse of iluldvel'i{qH OVel'telllI}01'attll'C

el)re'alien of ihe engine or such malfunclions of

lhe disk-c{)olin_" mecha]fism as were previously
dis{'ussed.

I f ,_ut)st:mli:d overteml)erature opet'ation is en-

('oulflere{1, ihe wel) may I}e sul)jected to cPee 1) lhat

]nay lead to severe neckin_ with an accoml)any-

ing increase in the {}vet-all diameter of the disk.
This condition is ,_hown in tiTure 9. A c(}mpos-

ire disk is shown, although the difficulty could
also occur with disks fabricated from a single

alloy. The dashed line shows the original con-
tom's of the disk and the solid line the contom'

after necking has la],:en l)lace. In this case, con-

sideral)le (lef(wmal ion took 1}lace in the weld area.

A photograph of a necked disk is also shown in

figuPe 9. The face of the disk was originally a

straight-line contour: the light shining lllrough

l"l(;vm,: 9. (;rowlh of w{_Ided furl)in{' disk.

belween the slraighl edge and the disk indicates

that necking has taken 1)lace.

If 'dh}wed to l)roceed, the defornlation or neck-

in_ mecha]lism can lead to a burst such as th'It

shown in tigure 10. The 1}hotograph shows a
disk fal}ric'lted of one material th'tt, had been

(}l)eI'ated in an engine having warl}ed c(}oling-'dr

I)atlles. This tyl)e of failm'e C:ln 1)e as cata-

strophic as a {'emcr lnn'st.

/

/

U?5 i

;. 4

_,_ii_̧

}"IGURE 10. Turbine-disk burst "Is result of excessive growth of wet).
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I;IGURE J 1.

In anotlwr case, deformation caused a failure

at a wehl defect in a composite disk (fig. 11).
The defect was caused by lack of fusion between
the weld metal and the hub material and the

presence of slag and porosity in the weld. The
engine was damaged beyond repair.

The possibility of a web burst can be reduced
in several ways. First, it is necessary to ensure

that the web material has the proper physical
properties to withstand the design stresses. This

requirement is particularly to be emphasized for
composite disks that employ welds, since these
are susceptible to a number of different types of

serious defects. X-ray, ultrasonic, 'rod penelrant-
oil inspections should be used in addition to de-

structive testin_ on a sampling basis. See<rod, it

is neeess.u'y to avoid engine operation at condi-

tions that will permit disk temperatures to rise

above lheir design level. Excessive web tempera-

tures can .ccur as a result of (1) prolonged op-

W,'ht failu r:'.

eration at excessive turbim,-inh,t temperatures,

I o) warping, distortion, or improper installation

,,f coo in,z-air baffles aml seals, aml 13) the

failure of any portion of tlle ducts that supply

,oolin_ air to the disk. ()bviously, the improve-

ment o_ any part of the en_zine, such as [he con-

trols o' the cooling-air system, which will tend
to ensure proper disk Wmperalm'e will improve

reliqbility of the disk. Since faulty installation

of the _'ooling system can lead to overbearing of
the disc, a device for warning of excessive disk

teml}er_lures or loss of coolin_ airflow would

increas,, reliability. Thir<l. parlicular attention

sh.uhl be given to the desiKn of the variotls

slru('tl! 'es adjacent to the f:lces of tlm disk to

minimi,e possibility of tlleir cominK loose and

m,_vin_2 against the rotating disk. Several disk
failure! in the service records are attributed to

1his ealtse.
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RADIAL (:RACKS IN RIM REGION

Thermal-fatigue cracks.--As slated previously,

tile combined (,ffecls of centrifugal hIading and

thermal/radients indu,'e hi/h C(mlllressive st resses

ill the rim area ot' the lut'bine disk at rated-speed

operal ion. l)urin_z" sl art in/. the thermal gradient s

in the disk are even more severe; as a consequence,

the stresses 'n'e furlher in('rease(l to tile point

where they frequently ex('eed the yield strength

of the all.y. This inlhu'es :tn immediate com-

1)l'essive l)lasti(, ttow. Ill some cases fut'ther

l:](;im,: 12. "lh(q'm:d-fali_u,' ('r'u'ks.

l)lasli( ' thlw van lake l>hu'e (:n a much reduced

rate) ]IV a (!l'eep mechanism. This cree l) can nlso

occur when the slvesses imlu('ed l)y ill(, teml)ei'a-
ture /radient are insutlicient to cause immediate

plaslh: Ilmv. In eilher case, on engine shutdown

the plastic tlow lhat o('(!lllTed 11| high (emi)era-

ture will imlm'e a residual tensile stress; this

stress nmy also exceed lhe yiehl stt'en/th of the

material and (muse 1)lastic fh/w in tension. Repe-

tilion of lilts cy,'le in su(,eessive starts nnd stops

eventually e.]_sumes the capn<'iiy of the alloy to
deform trod the rim ('racks. This mechanisnl of

failure, termed thel'lllal fat io'ue is <h,s('ribe(l in

reference 7. Figure 12 shows a disk (+racked l)y

thet'mal fatigue. This type of failure is cycle

dependent and generally occurs late in the en-

gine's life. In one+ engine, the ('tat'ks were not
noted until after approxinmlely 400 hours of

operation. Ahhough lhese oral'ks have I)een

known 1o l)rogress to failm'e (ref. S), this appears

Io happen only rarely. Consequently, it cap_ lie

concluded that ||le rate+ of progression is suffi-

ciently low lhat the (q'acks can lie noted aml lhe

(lisks rejecled at normal overhaul l)eriods.

In some of the newer engines, whiclt utilize very

lhin disks, the deformation per ey('le appears to

lie mu(,h grealel'; ('racks have been noted after as

little as 1 hour of operati+m. One l/Ossil_le reason

for lhis rapid deterioration is overteml)eratures

during starting.

As disk development advances and design de-

feels that e.nlse early faihu'es are eliminate(l.

thermal-fatigue cracking will probably become a

more predonlinant inode of disk failm'e. At pres-

ent, lhere does not appear to lle sufficient back-

_round it,formation on the thernlid-fatigue prop-
etqies of alloys to permit the (lesigner to predict

tile lhernml-fatigue life ()f a disk. lie must rely

on frequent inspection so that cracked disks can
be detected :rod removed fronl service before the

(.rael(s proo-ress 1o cat'/strophic :failures. Sinee

thermal-faligue cr:teks :ire cycle del)endent, in-

spections based on the lo+zged numller ()f eng-ine
starts would be desirable. Bee'ulse thermal-

fati/ue eraekin_ i_ made more likely llv over-

temperatures, additional insI)eetions fillet' ]tot
starts would 1)e (h,sirat)le. For this imrl)ose. "m

instrument that reeor(ls time-( emt)erat ure hist <)rv

o1! the en_zine aml sl)eed of lhe turbine wouhl be
,) f (+(msi(lerable assist ante.

Pin-hole cracks.--The pin-hole erqck (fig. 13) is

a sl)ecial ease of radi'd rim cra<.king. These

cracks origin'ire in the vicinity of the Int<'ket-

retainin+: Ifin h<)le and i,'oaress to l)oth lilt' f<)r-
waF(l tl.lltl tit(' aft faces of ill(+ disk. They ('lilt ])e

remlily detected I)v a sensitive surface-insl)e('li<m

technique that eml)hlys [hmrescenl oil. whiclt is

emulsified after :q)l)lieali(m. The ('altses ()f the

et'a(_kin_ nl)l)e'lr to lie COml)h,x ; several faclors

that 'Ire 1)elieved 1o e<)nll'il)ute to the f:tihu'es are

(1) Sl ress ('orrosion in the area ('ohl-worlu,d 1)y

the bl'oacllin K .l)et'a_i<m and ('ohl-worked I)y

scrat,'hin(_ dm'in,_ the removal of tm'hine t)u,'kets
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El JCr_ S[,_r!t ;

,r/J ,_<]ti: ,rl C_ CrG,]K

P_rl r, cl@ Crock _P,U1 IS

propaget ,rig toward

%ce of disk

(Fi_. 14, whi4_ is from r_,t'. !). sh()w._ lhe inter

gt':_m_ul;_r ,'()rr.._oH whi('h ;_(','()ml);u_i(,_ lh¢, ,'r_M<-

(2) ('(m('cnlr:_ti(m .f _lr(,.-._c: ()r ,_(.r:llrhes :uld

l(.d m:lrl<._ ;It th(, 1,ill hoh, it._t,lf

(:_) St_'(,_,_i_g I)y (he I)r('violl_l.v d(',_'rih_'d lll(,r-

m:l]-t':lI i,,a'm' m¢_(.h:mi._m

As ill the' ('_ls_' of lh(' th¢*rm;d-t';_li.,zu¢, _,_':_(.l_s.

1)in-h()h ' _'_'_('1<,__'_ul le;_(l 1. (h'slrurli(m ()f i]l_'

lur[)ine di.4_. The fr(,_lU(,H,' 5 of o_'('urr_m,¢, of Hd,_

(,l_gill(, m()d_,l. 7(; ])('l'('('llI ()[' I}1(' diq<s i_ ¢,_7in(,,_

comin_ (o ov(,rh:ud l f()r (';m_(,s (_ll_t,r th;_n (li_k

difli('ullie:) wet(, rcj(,('ted I)_,(.;_u_(, (_f l)in-h.le

c_':_('l<._. I_l lids (,_l,..,ine the ('r;M<._ _(,hl.m o_'('ur in

(ml)" (me l)i_ h()le, l-._u:dl.v, wh(,H lh(, 5- ;_re lir,_l

(lete('ted al)om fly(, pin hole._ _re fom_d to _'()Hl_dn
cr_l('ks ( refs. 1(| mid 11 ). The mmd)er ]twreases

r:widlv wilh :_(hli_im_;d Ol)era_ing tim_, uH_il l_O_

or :_ll of 1he pin h_d_,s (.ont;lin m'a(.ks. Ahhou_z]_

Ih(' _v(,rnge lime for lh(' tir._l :_l)l)(,ar:m_'(, (_f the

l'in-lml(, cra,-k,_.

(.rn('ks ._ quil(, l(mg (25(; hr). lht,y h;we 1)(,el).
]_()le([ i_ ;is few as '2"2 )mm'_. 'l']_c ('r;wl<s ,se(ml lo

|)l'oTr(,_;_ father ,_]ow]v; ill ()lit, l(,si (l't'f. 10) ;}1)

mimLl('> :1! -t-pcr('cnl ov(,rSl)(,_,d _H.I :_1 _li_zht

]"zt_ul-_E 14.--I_t(,rgr.tmflar (x_rr[_si(m :u_d ('rack al pin

hole. U_l(,lc]w(i; X10t|; fr(ml r_,f_,['um_, 9.
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overteml)tral m'e did not increase the size or length

of the cracks. (?rack prollaTalion to Ill(, aft face

of tilt lurl)ine disk {lht face neart,*t tile pin hole)

does not a])pear to l)e harmful. In a l'm_ in which

saw cuts simulated (:racks aft of ea('h pin hole, no

delelerious effects wert dtW('ted after 51! horn's o{

an atceleraied lest s('htdule. ('tin'ks hay( pro-

gresstd from tht pin holt Io lhe forward face of

the disk in :fl,(/ul 4011 h()m's of engine (,l)eration.

Of all lht som'('es ()f f:dlm'e, Ill(, It(n-holt ('ratk

al)pears most :rewind,h, It) tlilnimni()n. Many of

tile newtr tnTines hay( elimimm'd Ill(, pin h(lle

and ]rove sul)stilute(I "totttr pin" type Imeket-

retaining devi,'es. This chanKe eliminates not

only the st ress-(.on,'tntratin_ efft('t of tht hole but

also lhe svralchin_ somttimts ('austd by a sheared

pin (hu'in_ lmcktl removal. In sul)slitulin/ lhe

cotter pin for lht retaining pin, the ('.lttr-lfin slot
nlachined inlo the l_ollom ()f 1hi serl'ali(lns :houhl

have larTt lilMs. ()lhm'wist. as th,s('ril)td in ref-

erence 1_), re'at'ks may l_r()pngale fr()m the sharp

(-'oFnel'S.
SERRATION REGION

The prim'(pal cent ri fu¢al and thtrmal st resses

acting (m the lm'lfine disk are distussed previ-

ously. In ad(lili.n t()thtse stresses, there art sev-

eral other iml)t)rlanl slvesses whi,'h :l('t h)('ally in

the serrati(m r(@on t)f the tm'lfine disk that may

lead to disk failure. These are the tensile, shear,

and bearing stressts, which will /,e discussed

separately.

In some rtspe,ts, tht serr'nion region is the

most eriti('al llart tlf tile lm'l)ine disk t)et'mst

(11 The strration l'eTion is at the high(st tem-

peratm'e and ihe lift' is vtry sensitive lo ttml_ra-
ture. This rtl:ni(m is discussed in greater detail

in a sul)se(tuen| secli(m of this report.

(2) The serrati,ms are nearest to tile hot 7ases

and nre subject |o frtquent and drasti<' ttnq)era-

ture changes.

(31 Axial-tempera( ure gradient s (see tig. (;),
which ill'e ditti('ult to consider in (lesiTn. impose

n(hled stresses.

(4) The serralions have a eOmlllex shape hl-

volvin_r many small radii.

Serration tensile failures. Tensile failures in the

serration region may result from imd)ility of tht

serralions to withslaml ttnlrifugal lmll of the
hlqdes. If failures oc(_m'l'ed at the termimls tlf

the stress-rupture life of the alloy, lhey would lJ('

reKaMed as normal wtaroul and the relllOVill of
disks from servict tonhl 1)e scheduled on the basis

of stress-rul)turt lift, wilh allowances for tile

sc'mer band. I h)wever, st ress-ruptm'e lift of the

rim materi'd is gtnerally (.onsider:dlly _'renter

than lhe lime for tht first al)llear:mce ot' sire'n-
titre cr'uq(s. The faihn'es art altl'ilmted t(, ,mr or

more of the following rtasons: (1) The lem-

lleralures exceed those ant(ell>arid in design: (:2)

the alloy does not hay( lhe expe('ted life: (3) the

stresses are not lhose anlitil>altd in desiTn: and

(4) vibratory Stl'tSs is present.

Tht lift (if the disk is vtrv sensitive t() ol)('r-

atin_ teml)eral ure: if 1he ltml>tralure is excttded.

thtlifeisdrastically re(hwtd. This isillustr,led

[()r 1111/yl)ical _[isk alloy 16-'.25 t; ill tiR'ure 1;,. It,

ti_'ure 15(a) are the ('onventiomd Stl'ess-rUl)lure

CllrVts fop lht itl]o3" _aml. for illusl viii i(lll llUrl.)ses.

a ('ross 1)lot at a (.OllSlllllt Sll'ess of ;15,0110 psi is

given in figure 151b). It can l)e tmltd that. if

the disk-rim temperature is alh)wed It) increase

either through malfmmii(minK of the eng'ine or

through the inadequacy of the design tstimnie by

even 50 ° F, the life is sevtrely curtailed. For

e.xample, at 1200 ° F (see tig. 15(b)) amt a slress

of 35,tlt10 psi, the txpected life is 1111111]lollrs. If

the ol)er'tt in K temI)era| ul'e is increased to 1_50 ° F,

the life is rtdueed to 20i) h(mrs. (Smv(qsely, if

through lhe readjustlntm of disk to gas-l,altle

elearan('es or through an in('rense in (._)oling air

to the disk faces the temI)eratui'e could I)t, rt,dm'ed

50 ° to l lS0 ° F, the life could Ill I)roh)n_td six-

fohl and an added martin (if safety alia(ned.

In addition to reduein/slress-rul)lure lift,, ovtr-

Ienll)trftlllrt (':/11 (!llllSt illell/lllll'_i(!al (Ih:tll_es ill

lhe alloy thai reduce tht _ll'tnKth st) 1]111i lilt'
failure can t/(!(!ur (lm'ing sul)se(luent ol)erali(m at

normal ttml)eratures. This effett is similar I0

th'at of improl)er heat treatment of the alloy dur-

in/ processing, which can also t'mse l)rematm'e

lensile failm'e in tht sirra(ion region.
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An examl)h, ()f a slructural clpm_e (hat reduces

life is _iven for ],q 05 f; alloy in figure lfi. The

heavy preeipi(ale shown was produced 1G" over-

healing lest bars in the lal)oralory; simihu" slruc-

llll'es ]_.ave I)eell reported present in lllI'])ille disks
]mvin,z servalion lensile failures. This dmn_e
_re'tll 3, embrill]es lhe alloy.

A situatio,l in which lhe slren_'lh may not l)e

lha( relied upon 1, 5" the designer is one in which

(he nolch-rul)lut'e properties predmninate in con-

(r-llin V life. lh, ferenee 1° shows lh;tl lit 12t)11 ° l"

J
I 0 I O0 1000 I 0,000 100,000

Time fo rupture, hr

(a) Stri'ss-ruplure lift, of 16 2;, (i:dloy.

(b) Scnsilivity of sll'l.ss-rlll)lllri, life 1o l(.n, )vratur'e at 35,(1(11l l)si.

I"[I;I'IlV: 15. I':lt'eC( of h.nlp(u':ltllre on Ill;. of 16 25 (i nlh)y.

and :t ]).,:m slress of 4(),()00 psi, lhe life of I(; 25 (;

a]h)y is re(luted from I()0 (o 15 hours hy the pres-

ence of a), ().()12-in('hq'a(lius nolch of (he depth
used in lhe servation of n current turbine disk.

The noich-rul)lure })ehavior of :m alloy mqy
also ('h m_e un(h,r <')n(lilions (hat cause failures

•fl lon G limes. An (,Xaml)le of Ibis is 'tffor(le(l 1)y

(he alh)v 17 2°A(S) whi(.h is ('urren(ly heinK con-

sidered for (urt)ine disks (ref. 1:1). Figure 17
shows lhe rul)ture stre)l,,,zlh f()r l)olh smoolh and

},<)Ich(,( bars. At s(ress(,s (hal ('ause fnihtre in
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FH;('R_; 16. Slru('iure _f 16 25 tl :dh).v :filer aging.

]'h('ha,d, a(lu,.I)us :(4uli()n (d !}f} l),.rcenl hydr(whloric

arid ])lus l(l percent _diri(' acid; XS(}().

shorl limes, the nolo'bed lmr is sirun,_,'er titan lhe
smooih hay. In thiscomlition _he allovis_;tid to

be "nolch ductile." At tile hm.,.Z'er limes, lhis

situalion few, ryes and the alhw be('mne._"'nolch

brill]e." 'l'hi,_ reversal is attril)uled lo a pre(.ipi-

tz,,lion renclhm in Ihe alloy aml when, al ihe hmg-

esl lime_ shown, overaffin V ]ms laken 14re'e, lhe

.-:illlali()ll H L_qlhl I'('Viq'5(','-; :H|(| |]1(' alloy is 'lvain

IOOxlO 3

8°t

60-

to

40-

122
2©

O.Ot

_,,'" - Nolched

bar

Smooth/

bar - J

t I I 1
.I I iO _00 I,O00 IO,O00

Ruplure hme, hr

I"I{;URH 17. Slr{':-,s-rq|)tllr!' l)roperti_': of sin{ruth and

m_tchl'(| bars of 17-22A(S) :tt 121)i) ° 1:.

notch ductile. If lhe design stress is in the notch-

lwittle reczion, serral ion ditliculties may develop.

Figure 1S ,,,hows a type of failure lhat results

from inadequ;tte strenglh in the serration region.
Cracl_s in the tillers 1)etween the serration teeth

l)orlend in_'ipient failm'e. The (.racks can be de-

tected by the sensitive postenmlsion penetrant-oil

surfiwe inspection melhod. They venerally origi-
hale in llle axial eenler of lhe disk and occur

princilmlly in the radius below ll_e bottom toolh

lint nmv o_wasi,nalh" -_'_'m' in one of the upI)er

F';uorescent Cil //

_r,d_co' on of crack

_- Fat,gue u,eos

/

]"II;t Itl,; IS. _l'l'l';ll[II/l f:dhum
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a, eth. l'ropagation of the cracks occurs by a

fatigue mechanism: the radiatin_ lines and senti-

circles that are imlicalive of fatigue can be seen

ill ii(...rul'e 1S. The fra<qu.res sehlom occur in only

one segment : the usual case involves lhree to five

seFratioHs. ]nit as lttl/ll}" _lS sevel/leell have beell

noted.

In one en_z'ine lype. this mode of failure was

lmrticldarly tr<mldesmne" 61) such failures oc-

curred ill sel'vive, with alq)roximately 45 l)ercem

()f llte ellgilleS colnino" to overhaul giving evidence

of in(.il)ient failure. Time for the failm:e has
varied front at)()ut 23 l()3011 holIl'S: lhere does not

al)l/ear to 1)e any correlali(m with rmmin<_ time.

The I';Ite of ('t'tl(+k lWOl/agati(m fron|, tirst al)l)ear-
:uwe to failure has not I)een established, l[ow-

ever, the fact ihat many disks are found during

overhaul insl)ecii(ms t()contain cracks iml)lies a
slow rate ()f l)r<)lmga! ion.

Ill a sl)e,'ial f()rm of serration tensile cracking,
lhe cracks occur on (rely one side of tile serration.

Sm'h cracks are shown in figure 1!). If a (lisk is
in a c(mdition in which serralion tensile cra(.ks

fron| any <d' the previously mentioned mechanisms
•ire imntinenl, a small nommifornl load could

cause tilt' failure t<)()('cur initially in one side of

the serr;ttion. Factors that miTht itnl)<)+'..e such ;/
nonuniform load tire (1) machininkc errors tim!

shift the lmsiti<m of the root with respect to the

airfoil, (2) inadequate conq)ensalion for gas
1)endin,,_ hm<ls, (3) wari)age of the airfoil lhat

iemls I<) shift the ('enter <)f gravity.

Thi. type of crac]+:in_ t'tiii OCelll' tlt ttltV tooth.
Ill ()lie t'lt_'itte type, it frequently resulted in loss

of tile ()uterm<)si tooth witholtt destroying the
abilitx of the disk to hold 1he buckets. For this

engin% cra('lcs ill the lop set'ration are not a cause

for (li+]_ rejection (ref. 14), and tolerance limits
have I_een estal)lished for cracks in <)ther serra-

lions. Since the rate of l)rol)agati<)n <)f the cracks

is unl.nown, 1his hitler 1)roeedure al)l)ears haz-
tu'd oil:'-.

She_r failures in serration region.--There has been

no evi lence of shear faihu'es oc<!urrin_ in service.

This tyl)e of faihu'e is included in this dis<.ussi<m,

however, Ix,cause shear failures have been en-

('<)ttlllt-red ill sl)in-l)it studies of turbine disks, and

be(,ause studies of the shear stren_ilt <)f turbine-

disk alloys indicate increasin_ likelihood of lhis

type <,f failure as <)l)erating temperature is in-

('retlse,|. O1" ill t lie eveltt of severe overtenll)erttttlre.

In on,, siudy (ref. 12) an example is given of a

current disl.: (lesion that has an exl)e(qed life at

121)()+ F of about 200 hours in tension and 'd)out

,- .) ' ., < ";
. ( 5 .

FI(HRE |!).-- Serration t('nsil+' failurt's r(,stflling fr(_)m

nonuniform loading. ];t(+uR_: 20. S(,rration sh(.ar failur('.
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1500 hotu's ill shear. This disk could 1)e exl>ected

to fail 1)v tensile s|ress-i'lll)lllre. ]f the tempera-

ture were raised 1o 135(I _ F, both lhe tension life
and the shear life wouhl be decreased; but shear

life now controls, and a faihu'e in shear ('ouhl be

exl)ecled in al)(mt 16 holtrs.

Fi,_,'ure 20 sltmvs a spin-pit tlisk lhal has suf-
fered a shear failure.

Bearing failures in the serration region.--Stress

analysis f)f the serration region indicates that

the teelh are sul)ject lo substantial I>e'u'ing

stresses, allh<mgh service experience does not re-

cord any faihu'es allrilmted to them. A bearing-

stress failure wouhl he manifest 1)y Sl)alling and

checking alon V the line of contact between the
teeth and llle lurl)ine blades.

TURBINE-SHAFT FAILURES

A tyl>ical lm'l)ine-shaft failure is rel)resenle<!

schematically in li_'ure 21. Faihu'e generally

occurs at stress-concelltration 1)oinls such as those

at the bearing-retainer threads. Since this region

of the disk operales at relatively low siress, the

faihtres are allrilmted to mmsual operating con-

!

: i

, i

Fa,lure ,nbearmg-
relainer threads, "

II / '.

, " ................................ v]4_ _ i/ f ....... [ kWm

...............................':irii:i;;I.. ,"
J

".,,

FIt;tilE 21. "l'uri)ille shafl failure.

ditifms. Several 1)ossihle causes are i 1) torsional
vil)l':fli<)n of the shaft, (2) overhealinK of the

shafl caused hy faulty l>earing operation, (3)

failure of the eooling-air supply to (lie 1)earth 7.
(l) sudden unl>alanee loads iml>osed by I)uckeI

failm'es, :tnd 15) 7yr<)seopic loads.
There are no data lo indicate whether _he

faihu'e goes through a (teWclal)le in('il)ient stage.
but the currenl l)ractice of inspecting lhe shaft

during overhaul by magnetic means or I)enelrant
oil is mldf)ul>te(lly stored. Shaft failure; while

rare, is exl remely destru<!tive.

INFLUENCE OF MANUFACTURING PROCESS ON
RELIABILITY

QUALITY CONTROL BY ALLOY PRODUCER

Billets to 1)e forged into turbine disks are pur-
chased 1)v lhe fal_ricalor on specitiealif)ns of the

individual engine l>r<Hh,<'ev. These sl)ecilications
are elaborations <)f the standard Aircraft M't-

terial Sl)eciticalions tAMS) and inehtde stand-

:trtls for such ilems as grain size, holnogeneily,
and cleanliness that al'e llf)l itwhl<le<l in tile AMS.

l'l'esenl l)raetice is l<) l>reserve the identity of the

]mat, ingol, and ingot position: the engine 1)re -
<htcer records ,his infol'mati<m with the disk

serial mtml)er. Shf>uhl disk dilticulties then de-

velol), the pr<)tluciif>n history of the disk can be

re:frilly <'onsl rucle<l.

This 1)a<'klo V of inf<)rmation could 1)e a fruit ful

tiehl ff)r slalistical studies of the elt'ects of l)r()<"-

essing v:u'ial)les, if accurale service hisl(>ries for

the disks were also availal>le.

The alloy Sl)',cilications cover l'Olllille l>hysical

l)r<)perlies aml sf)mMmtess of lhe disk alloy. The

in fvt,(luen<'y of catasl tel)hie faihtt'es imlicales thai

t lw sl)e<'ili('al ions essenl tally accomplish lhese lmr -

I)()SPS: ]lowever, there ,_ll'e oilier failure mecha-

nisms bein,¢ em.fmnlered in service ft>r whi,'h ('llr-

rent it,sl>e<qifms :ire 1)elieved 1<) lie imtde<luale.

These in('lmle thermal fati,_,'ue, sll'eSs-t'()|Tt_Si()n,

eml)rilllement, and resistance If) notches. A<le-

<luale it,sis can be re'tdilv devised for determin-

in V lhe resistam'e of the alloy io st ress-C<,l'rf)sionI,

emlwilIlement, :m<l nolch l)rf)l)erlies, I)lll lhe lim-

its for sl>et'iticalion l)Url)oses would have lo l)e
<h,lermined. In ill(, <'ase of thermal faligue, c<)n-

sideral)le resear<'h is required to devise an ade-

quale lest melhod.
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QUALITY CONTROL BY FABRICATOR

ill mtlkin,_ the disk, the fabricat<+r trillS< ensure

thnt it it<eels tile reliability standards <if the en-
_ZiIIO prodncer, q_'he speciii<:alion eliStll'ill_ re-

litI],ility al)pt,nr._ to be dtqerlnilled+ :.it present,

prinlarily by the elt_ille producer, lie is, of

course, well aware of the reputation that lie ntttst

Uldlohl in providin_ a relial)le product: front this

consideration, ill, Wollh[ be jttslilied in reqttii'ing

very closely eonl r.lh, d fnbricatlon and inspect ion

In'oeesses. ()n the other hItttd, the ell_ittt+ pro-
dueer ren]izes th:it there nre Cel'ttlilt limits of oon-

trot ttnd ittspect ion beyond which it is not reason-

nbh, to lit<wet,t|, because of tile efl'et'ts on ])t'<idnc-

lion :tl)ilitv anti et'on<nny; lie does not feel .jttsti-

tied in re<lttirin _" addiliotutl inspe(,tion ltnh,ss he

is cerl:lin of the signiliuatwe of the added require-

ntent 1o l+erftn'tmtn<'e. The fitml ittspet:tion

sl)ecili(mti(ms are ttstutlly it t!onlprt>ntise between

what the engine in'otlneer would l)l'efer and what

tile disk fnl)rical<n' ('tllt l'elts<mnl)ly he exl)e('tetl to

l)erfortn. An t,x:ntq:'le of disk fal)l'icatilm ittsl)et+-
lion l)rocedttre is iIs follows:

(1) The rt)ttffh for_zin_ of t'he l+illel is sl)eci-

fled with regard to telnl)erutltres ltsetl, tilne tlt

telIlpet'Ittttl'(L illlt] Itltl<)tltt| of worl<iuff t:'l' the nttt-
terial.

(2) Tht, l'tm:.zh l'(:'r:zinff i+_ heat-irent(,d :le('Ol'd -

ilt,,...rto n _'ixt,n ])l'(:'t'edure+ untl st rtlighleninff of lhe

shrift is at+(.<mlldished :tl this l)t)int, if :ll)ldicalde.

(3) At't+eptttn(+c t)f lit(, l'llll<_h ft,t'_zit_ff is nttttle
on the l,tlsis of (:,Ill' Of ,<('xertl] Inelh<)<ls. 'l'w<) <}f

the llttq]l()(I,"- ill ('tll't'ett| ltSe ql'e:

(a) _;tn_plt's <_f e:l,'l_ t'()r_'iu_" tire I)r.vith,(t t'r<mJ

w]_icll te>l Sl)e<'inlel_s <'un I)t, macllin(,ql. Meilsurt'-

lllelltS tll'e Illltt]( _ I_1 ! Sll(']I sh<w{-iinte :ntd ]<)nv-linle

physicitl IWOl)t, rlies Its nltinulte stl'enfflh, yit,hl

st rett,?..'th. duct ility, h;trtlnt,:_s+ st re+s-l'Ul)t ure

st ren,.zl h, ,tll(I n<:'it'lt-rnl)tnre +Iren_th.

<Ill N:tntldt,+ |'<)r te.'<t st)<+,till<ms tlre +)btahletl l_v

('nltin_ u l) tyl+i<,tll f<)t'ffinffs :/nil le.,.iin_- its fle-

s,'riht+d in (a).

(t) The t'()r_'in_ i_< l'_m,dh nm('llint,tl :trill in-

spt,,+It,tl l)y X-r:ty. till r;ts(,nie-l't,llcct i<_+l, lind frilly

llt'l i_' 1:':I I'l il'lP llltq hods.

(5) Tlw f<n',_,in,_,' is liI+i_li-_n:t,'llint,d :tn(I in-

:_l)et'lcd I:'\ n l:'etwtt'nnl-<_il ]ltt,tll<)(l+ lmrti('u]ttrly in

flit' lnI_'ktq f:t_lt,niiu.2" rt,:..t'i<)n.

(_;) The disk is Imlan('t,l], ],n,'l,:ett,d, :tl_t] +pin

te_te, l nl ,)v<'rspt,t,_l. (In<st<It, diltmt,lt,r i_ nu,ti>urt,d

befor_ and after the sl)in lest, and the entire

wheel is insl)ecled by magnetic-1):trticle and I)ene -
trtult oil methods.

(7) Corrosion protectitms are 'q)plied.

For eOlni)osite disks it is :/lso neeesstn'y tll in-

t'lltde IMeqUtlle Sl:'ecilical ions covering t]le wehling

ol)erulion + wehl inspect ion+ and wehl repair.

Mitnv of lhe lWCes._tn'y (!onqn'()nlises in the

Sl:'e,'iti(':tti<ms nt'i_.t, fr<)nt lilt ina(h,tltmte l<ntnvle(l_e

tff w_utt limits may In+ rider:tied in the various

insl)e'ti<m l)l'OCesses, lh,liltl,ility of a disk itt-
Sl:'e(g,'tl by :t _'ive]t l:'ro('e<hlrt+ nltly therefore (le-

I)en<l to a large extent on tlt(, nrl)ilrtlry seleeti<m

of th','se limits. Ill athliti<m, lhe effet!tivelwsS of

the inspection l)roee.-,ses is _re:ttly il+fllmneed by

l ire tl,-_ree of <heir sensilivitv tirol by htnniln error

f:t<'_o's inv<)lvt,d in t:ltrryin<_ tlletn out. Tht, effect

<)I" human erl't:'t's is partly nttlliih'd lLv tlw limited

.i'<:'ss cite(q.: tltltt s,mte (if lilt' iu_,pe<'_i<ms ntal.. ,m

ea,'h )liter. (_(msidet'Mde rt+se:ir(:It is retluir,,tl It)
impr<,ve the reliability of in.,.pt,ctitm ]w<n'ethn't,:.

INFLUENCE OF MAINTENANCE ON DISK
RELIABILITY

PRESENT PRACTICES

(h_:'rt,nt l)t't:','(,t|i_t't,s f<)r l i_rbint,-(|isk inspt,,qi,lt_
in('ltt_le insl)e(!t i<_tt :

(1) +kt s,'ltethth'it ln'l'iods Itt the <)l)erll|inff lmse

(Ill It<my <'tt,_t'_. iu:l)e,'ti<,ns itl'e r(,tluired :It ".2)5

nn<l 1)0 hr (m In)lit tIvtq'httll]tq| illld lit"+,'," O]I_ilWS.)

(_) At lll:tj()r (_Vel'h:llll

(:I) Afier tile tHl_'ille o])('l'tlliltO_ ]illlit. _ Ot! |0111-

l)er:tl _l'e or Sl:'eell have lleen exceeded

Th,, inspet'i itm l)erftn'tnt,<l lit lhe <q)erltlinff 1,tse

is fret erally only visuttl, troll, :is far :is the flick is

<'<_lt<'t,+ne,L is _t.vet'ely linlile,I f<,r two rt,nson_.

];if'St. the ]_ll(']_t'IS ill'(' It()| l'OlllOXt'(l: ;I_ tl l't'Sll]Ir,_

1]W Sl I'l'tlli()ll ill'OH"-; +'tlllll()| ],U l:'r, qlt,r]y ('X:llllilWtl.

,'Kt+(.()_ _t. llw xxlwel_ urt, n<)l rtm_)xe_l t'r<)n_ lhp (,n-

o'ille: ('<)ll_t,illlt,lllIv , OllIv l}+l' (l()wn_<Irt'nn_ flirt' _)I'

tile t[ ._k _'_t_I l:'t, \il,wt,<[. I_ nltl]ti,,tn,,'e Inrl,i+ws,

l]w t')l'W;ll'<l :<t;I_'t's _'+lllll_,t l_e t'+\:tlllillt'<l :t! t_ll.

TI.' strut'<, i_('ltl_lin,: i}w ,i<,lll'll:|] :ll'e;ts. is Ii<ll vis-

ildt, i l till 3" ('_l_t'. Vi>q_ttl exIll_dn',tti<m i,[7 1lie ttc-

('t'>-sil)h' :trt':/s i_ n<)l entit'_,lv _:l_i>f:l.t<wy, ,_in('e

ilu'il)i ,_11 fitihn'e <'<uMiiiou: IIt't' ',tl:'l Io t"-<':l])p tle-

It'cl il)l. ( ;t'_>-S lh, ft,('l,,. ,'-/wh :is rnl)l)in:_," of :ttlia.t'_tt

}>',tl'l_ <)I' l)et'ImllS _exet't' weltl ut'<'l¢in_ lll:ty. ]ll)x'.,-

<,vt,r. ,t, dis<'tlvt,rt,,l. I_ >,<,I_,t,(':t_t,x, I_t'l,ilu,-l_l:t<h,

li I) ,I tllllt,ler is lllt,nsilred :tl t}W <q_ernlinff l,',tst,.
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1 f growth has occurred, it is generally ln'esmned

to h'tve [aken i)lace in the buckets, in general,

the operating base ex'unination is focused much
more on the buckets th'm on tile disk.

Inspections performed at the time of major
overhaul are much more complete. In addition
111 visual examination of the entire disk and the

>haft areas_ lneasllrelllents are llla(le to deternline

disk tzrow[h, and penetrant-oil and magnetic-

particle hlspections for cracks are 1)erformed.

In some cases, the disks are as'tin subjected [o

an overspeed spin test. The advisability of this

1)r'tetiee has nllt been definitely established. :ks

stated previously, tile l>ossibility exists that eer-

lain incipient faihu'e conditions may. be a,_gi'a-

v'tied by lhe overstressing.

The criteria for an inspection lnade because of

excessive turbine speed or temperature varies con-

si_leral>ly from engine lo en_zine. Such insl>ee-

Iions are inten(led l)rimarily "is a 1)r<lle(qion for

the turbine |/uckets and tile other c(nnlIonems
thai are directly in the hot ..... _s stream. The disk

i_self is not in this stream, and hence is affected

by ]'u'_'e momentary overlen_l)eratures only, - .

through delayed c.n(luc_i.n from /he bucket

t_ases. Over[eml)eralure of the disk ilself is

(heref<)re unlikely to occur mdess lhe overtem-

perature operation eonlinues over a substantial

period of time. Tile scheduled inspections are

neee_s'u'ily based on the needs of |he turbine
hu(:kets 'rod nozzle vanes and qre conservative

with resl)eet lo |he (lisk. Examples of overtem-

l_era! ure operal ion for which inspect ions are spec-

tiled for some engines are as follows:

(11) After "t single hot start in which tailpil)e

lellll-)eralllre exceeds 200() ° F f(n' at least 30 sec-
,mils (ref. 15)

('.2) After tlve h-t slarts dui'in 7 which tail-

pipe {emperatm'e exceeds 1500 ° F fin" at least 1

mimlte (ref. 16)

(3) After tire 20-see(rod periods during which

t:/ilpipe lenlper'_lure exceeds 1320 ° F (ref. 17)

(4) After tlve periods in which lailpipe lem-

perature reaches or exceeds 16[)0 ° F momenlarily
(ref. 17)

(5) Wheel is replaced if lailpipe temperalure
reaches 1_q3_° F once or after 10 times at 1600 ° F

(ref. 17)

In eerlain eases, if the operation is sufficiently

severe, the en_'ine is sent |o overhaul without
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insl)ecti<m. Examples of (iversl>eed limits are 2

percent for one engine (ref. 16) and 4 percent for

anolher (ref. 17).

SUGGESTIONS FOR IMPROVING DISK INSPECTIONS

The current incidence of disk failures indicates

{hal re(ire rigid inspeelions are desirable to im-

1)r(/ve reliability. The inspeelions must be prae-

[teal, however, 'rod efforts should be made during

[he design of an engine to provide maximmn

accessibility of the turbine disk. In addition, in-

st)e,:lion l)roeedures must be Slleh that no dam-

a7e will 1)e incurred as a result of/he inspection

itself. This is a problem at the present lime with
certain disks in which the buckets 'ire held in

l/.sili(m tly means of a pin. _Vhen the buckets

are removed for inspection of the serrations, the

pin is sheared; llle sheared pin makes deep

scratches in highly stressed areas of the disk. A

redesign .f the bucket re|ainin g device is, of
('()llrse, ill order.

As staled 1)reviously, inspections are required

qfter <'erlain ]trails of lime, lemperature, or speed
have been exceeded. It would be desirable to

base the inspection requirement (m the record of

't s llee(l-lemlIerature-time recorder 1)ernmnently

atla('hed lo the engine. The liilot is not always

aware i1t! exceedin_ limils m" he may misjudge
lhe am(lunt 1)v which lhe limits have been ex-

ceeded.

Iml)rm'ed (ll)eralional reliability may result if

addilional inspect ions are made:

(1) Inspect <lisk serrations wllenever tllades

are removed ai lhe ol)eratin;r base. This in-

sl)ection should lie made l_y lhe l/(lslemulsion

l>enetranl-(lil melhod. If cracks are fouml, the
disk shlmld be sent to overhaul.

(2) I)ortal)le hardness testing e(luil/ment is

:lv:dhd)le and could l>e used at lhe ol>ei'atin _ base
i(1 determine the exlent (If struotm'al deteriorn-

li.n. The speei/i('ation ranges fro" hardness are

generally quile ln'(l'M; 'lnd if a (lisk is inilially

near one end of the ran_ze, il <'an have under_one
considerable st muq m'al than ,_,es and sl ill l,e wil hi n

lhe speeiiieations. To make the hardness 't mean-

in_rful inspection tool, it wouhl be desirable to
estat>lish the rim hardness of each new disk. This

could l>e done ]ly nlakin_ hardness tesls on l]le
sides of several serrations, lIardness tests made

(turin,_ inspecti<lns can lhen be compared with

Ihe .ri_inal hardness 'rod chan,,es_, evahmted. At
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lhe l)resenl lime. there d(les not appear to I)e
sullicient dat't to .iud_ze wh:tt dezvee of hardness

l']mllKe is tlan_el'OUS: however, it is known tha!
ilwl'eases ill lmt'dness lend to indicate _realer

milch sensitivity. Ih_sear(.h nmv esi:flllish wlmt

clmn2_'e in ]mrdm,ss sh/mhl require disk remmal.

13) A record slumld I)t, kept of the diameter

of the disk ilself and lhe depth of lhe serralimls

to provide knowledge ('oncernin_ possible growth.
F_n" :.1 wehled disk, scribe marks _m either side of

lhe wehl cmfld I)e used fro' addilional dimensiomtl

,'lweks. Necking" in the web region should also
lit, looke([ for.

(4) Mil'rostrm'tm'es (d" the disk could be de-

lermined by polishing" aml etch:n,>,." the sides of
one or two serrali(ms l(i detecl diln_el'OllS metal-

lurgi_'nl <'halm._'es Ihat llmy ]mxe t'/ken place dnr-

in K ell_ille operation.

ADDITIONAL INFORMATION NEEDED FOR IM-

PROVEMENT OF OPERATIONAL RELIABILITY

Information in llte following areqs 111:.13"iln-

prme the reliabililv of tm'bine disks:
(l) Similes of mqterial l)l'operties.

la) Nmch sensitivity: There is a scarcity of

inl'ormaiioll abmt! the sensiiivily of the lensile

nnd slress-ruptnre prol)eriies of disk alloys to

notches. Some wm'k in this th'hl is i'urrenlly
I11 id(, l'%Vll v.

(b) Thermal fatigue: The 1)charier of mate-

rials under conditions of thermal fatigue should
be studied to deierniine the factors which in-

fluem'e thermal-fatigue life.
(el Ell'eels of combined shear and tensile stress

f(w long" times at high lemperature: Exlensive

informati_m is availahh_ on the stress-rupture

iwoperlies (it' disk alloys. The serration region
of a lurbine disk, hmvevei', is subjected to It
emnlfin:tlion of tensile :rod shear stresses. A

slmlv to dtqermine the eit'eets of combinalions of

stresses alqmtxiniatin _ those in an engine wouhl
ln, .f cmlsideralde vahle.

(d) The effect of vat'ialimls ill tenq)erature on

tile stress-rupture lift' of disk :tllovs: Ill ]trlle-

lice, the disk is subje('ted to brief periods at

OVOl'tt'lll[)el'aillre eonditiou_;: the effects of these

t)ll the sIl'ess-l'lll)[llre life may 1,e ilnl),n'lant.

(2) Nludit's of dr,sign procedures: InSn'nm-

ti(m is m,t,dt,d ,hi desi_'n melliods ihal ,'onsider

such tic!or: as llwrnial fnti_ue nnd the stresses

due 11 nxial telnperalure gradients, particularly

those :n the sel'ralion region.

3) l]nlwoved instrument:ilion.

(a) The develolmlem of a li_zht, rugged flight

l'el.'Ol'llPl' (iime-speed-teniperaiure) would l>e use-

t'ul t'_lr s('hedulin_ insln,_'tions :is well "ts for the

:l¢'eml,,flati(m of superior s!:llistic'al data.

(b) A disk-_'vowth indic:llin_z devi('e would

aid Ill,, pilot in axoidin_" web failm'es and weld
failur( s.

1;4) Alhw qualil.v and insl)ection.

_VJiSle lliere is little evidence l]llit recent disk

failures have been due Io defective alloy, hlfor-

lllalilni ()ll t]le service life (if a lll/l(']l Of disks

lil'()(lll,'t'(l llll(leF (h'itsli(':lllv lig'hiene(l qualily eOll-

l l'()] _1 eci|ie'liion lliiSllt indicnle lliai sill)st:in|:a]

]nllWl)velllenl olin lie innde ill this direction.

(5) Fiehl inspection.

lnsl,eclion nlelh(ids t]lal will readily detect

chan_,'s in '/lhivs tit'(, urjenilv needed. Such

nielh(lls could eimonll),_ss hardness, mieroslrue-

lill'e, :,lid eleelrie'll 1)roperlies llS possible insl-Jee-
lion t_,ols.

CONCIATI)ING REMARKS

Failure of :l !urlfiue disk ('till CallSe innnediaie

deslru 'lion of :lit en_'ine. Turbine disks fire in-

specie, I in ninnllfa('llire for internni lind slirfae0

flaws ind lll'f' usunlly _iven o'<el'Slleed spin tests

Io clltck their sllorl-linie sire::silt. I)ifliculiies

with 1 Irl)ilie disks ill service can develop l]irolig'h

(l(,siKli defeiqs, ovt, riie:iiiil_, llierlnal <'velillK_ and

<'reel). The l)l'incilml disk failnre niechanisnis

are Sll i-iiiinrizell in ]i_2ili'e 22 flit(| tal)le I.

l)essli defe('is olin 1)esl })e eliniinaled in lin

'nleqilile di,vel()lmit, iila] ])l'(_raill till II specific

eilSil-i( t.vpe.
()'<e ']iel/lill_2" I':lll ])e _'allsed ])V fitihu'e of lhe

disli-i',n)]iil¢ systeni, ]inl)roiler insla]lillion of ihe

sVSlell , O1" ext'essive (Illlll])llS|i()ll telllpel'_lllll'OS.

Overh ,aline" in eonihin'llion with the sl resses in

the di<k eausell l)y ('ellll'ifll_£11] fore(, ('till ('I/lISe

(,xce:-s:'<e _l'ov<ih ()f tile disk l'illl. ]_el':lllSl! rapid

lind citlaStl'Ol)lli_" failUl'e of disks olin (J('('lll" 1/,%"

sevel'(! overlellll)erllllll'e. :1 devi,.e f,n" wai'ning of

ovt,i'lt, lil)eralllre of lilt' disk is desirabh,. Pos-

slide (ievi('es lhl/! nii_hl 1)e devehlped tire rltdia-

!i_)n llierni(i('oulih's lhni st'till the disk rinl. ole0-
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Serrahon shear--

Radial rim .'
cracks - -1

_ - Serration tensile

crack

,--Web (weld) necking
and crack

Disk burst "::

l:i(;,:rr;22.- Lwatim,s,)f di_k faihm's.

1rival c()nta('t ,h,vices t],ll warn of excessive disk

_rmvth, ()r a device t() detect :l reduction in

(,oolin<: airlhiw.
'Fherllml _'velin<_ ttss()('itlied with starting, ae-

celel'ttling, and slop1)in_r ,if the el/_ine causes

l)h/sli( ' worldng of the di_k material and even-

iuallv l)l'()(hwes ertl('ks in the di.-:k rim. These

ertl('ks may <)riTilUlte in sm'atelles caused hv

shetlrin.r (If the hll('ket ret'lining llin dllrin_ re-
ln(iv:d +if the l>ucket fl'Oln the disk. In lno_t

('ases, lhese vra,'ks l)l'oTress slowly enouTh that

insl/e,.tion can he delayed to ,_ suitqb]e hlspec-

lion l)eri<ld. Insi)ectim_ of the disk fin" cracks al
the base (if the serrated tl+l'ell ('till lie made when

Int('ket_ tire rt,phu'ed fir during n selmduled in-

spe('tion period.

The _.entl'ifugal fol've exerted |iv tile lmekets

n,av eventmtlly (':lute sllt, ttring oi! the fir-tree Sel'-

rat i()ns ill the _li+l¢ <)r st ress-rtq>t ure fa]hn'e tlet'()ss

the th'-tl't't' see'lilt'lit. Vet') few ftlilurl,s of the

shet/t' l,vl)e httve IWl'lll'l'l+d: }l(IWt'Vl'r. lllllllel'OllS

strt,ss-rtl])tllrt' failure+- art, noted in the literntur(+.
Thert, is ll_+ fmMnmental reason why the +t+rra-

ti(>n segment (':lnn()t lie (h,signed fro' hm,,._" life.

The short stl.'ess-rtLl)tltre life tlult has been en-

('Ollil+tt, t'ed ill s()nle ellg'illt'S "wa_, StlSl)e('ted to ])e

caused either by <lvertenq)erature (if the disk rim,

enll)ritlh, ment indttced l)v ()vet'leml)t, rtttIH'e el)era-

lion, or tmih, sirable inlqalhn'<_i('al l)ra(+tit.es in
llll/llllfll('t Ill'l +.

hl ('onmit, rcial Irtmsl)()rt service, mtt('h l(m2_'t'r

(li:l,: ()I)er:lling life will lie required |hall ill lnili-

larv servi('e; tinie-(h,l)en(lent failures inav then

I)e nlol't, fre(tlmnl. I)ifli,ultie+ tire often in(Il-

l'areal l,5' llef<n'nlati<m <)r ('rneldny l)f tile serra-

ti<)n sevl()r, lnlt till tl('('lll'ate hldi('ati()n of in('illi-

ent ftlilul'e is not always avaihlhle. Faihn't, of
Oil(+ serrated sector l'l,sults in the loss of lwo

hhl<les and sonleiilnes unhah/nees the disk sulli-

eiently t() be ('tltastt'ol)hie.
Fm'lher, the faihtre of a serl'aliml segment

ttsuallv tri_Tet's the failure <if additional seg-

ments: _z'enel'ally, lnore than two fail 'it one time,

ttll(l tlS lllttlly Its sevell|een have ])Ceil kllOV+ll |o

t'nil :It lhe same time. The un|)alttnee caused by

failm't,s of this kind lllay (le_tl'OV an engine. In

n mltltisl:l_e turl)ine, fniled paris will l)rolml)ly

dt, strtly tlle dowllStl'etlln slt/_es tll/d st<q) or /lt,-

str()y tlle engine. The 1)ossillility of fnihn'es <)f

this tyl)e can be minimized 1iN :l rel)laeelnenl s('hed-

Itle set u]) 1)y tile user wit]l the advice of ill('

m:umftU'tln'er. Tile rel)hleement s<,hednle sh<mlll

nl:lke a(le<ltutte alh)wan('e for tile s(.atlel'lmnd in

disk l)r_)l)erties and fro' ln/Usunl Ol)eralin _ ('on(li-
lions.

In smmnnrizin_, Ill(, foils)win 7 l)r:lcti('e ill st'rv-

ice with rt,_ard to the turl)ine disk is suggested:

11) S('he<llde inspections for rtldial and tan-

_t,l/ti:ll rim +'racks, rinl /roy:Ill. defornlation

<if the serl':flion region, nnd evi(len<'es +)f enll)ril-

ilelneni. The insl)e('t i<+n inlerval shonhl lie based

<m 1)(_th opt, rating tilne and the nulnlter of starts

and stops to which the eneine i+ stlb.je('te(t.

(2) Insl)eet disk rim f<)r erttcks whenever a

lm+'ket is vel)hu'ed.

(3) I)rm+itle :t <leviee warnin,_ ()f (ivert(,nq)er:l-

lure of the disk.

(4) S(.hedlde rt,I)l:u'ement time for tile disk,

1)asl,(l .n tm esiiln:lle _d' its life, with an a<le-

<lU:tte f:lvt<)r of safety for the seatterl)and and

()tiler im(.ertainties.



1;_ TI,'CltNICAL I_EPOH'P H St--NATIONAL AEt]ONAU'I'IUS AN1) SPACI," A1)MINI_THAT1ON

"L

2:2

5r.

E-
Z

7,

2:.

>-

7,
7,

.2

vN

_= !-5

_ _ .......__.___

__ _ _
k_

_. _ _.=

_ k

,_ .-.



FACTORS THAT EFFECT OPERATIONAL RELIABILITY OF TURBOJET ENGINES 159

REFERENCES

1. Anon. : Summary of Jet Aircraft Accidents Caused

by Engine b'ailure or Malfunction, J_m. 1 through

I)ee. 31, ](,}53. ()lliee of Inspector Gener'tl, USAF,

Norton Air Force Base (Calif.), Apr. 2, 1954.

2. Morse, C. It., and Kemp, It. H.: Evahmtion of 't

Compressor Bleed System for Rinl Cooling the Tur-

bine Wheel of a Turbojet Engine. NACA t{M

H33 L2'2b, 1(,)54.

3. Morse. C. R., and Johnston, J. 1_. : Temper'ttures in

a J47-25 Turl)ojet-Engine Combustor tin(1 Turbine

Sections During Ste'J[ty-St_tte ;rod Transient ()p-

erdition in a Se_t-Levcl Test Stand. NACA I_.M

E54K30a, 1955.

4. IIohus, Arthur G., :rod Repko, An(h'ew J. : Correla-

tion of Tensile Strength, Tensile l)u(_tility, and

Notch Tensile Strength with the Strength of Ro-

t_ting Disks of SeverM Designs in the l_.'tnge of

Low arid Interniediate Ductility. NACA TN 2791,

] !}52.

5. Munson, S. S.: Direct Mothod (,f l)esign and Stress

Mmlysis of I_.otutin_ I}isks with Temper_tture Gra-

dient. NACA B.ep. 952, 1950. (Supersedes NACA

TN 1957. )

G. Mans, m, S. S.: AnMysis of l_.ot_ting ]}isks of Arbi-

tr_try Contour _md Ita(liM Tonq}or'mtre I)istribu-

tion in the I{egion of t'htstie l)eformation, l'_tper

presented at First U.S. Nat. C-ng. Appl. Mech.

(Chicago), June ll-1(L 1951.

7. 3[:ms.lt, S. S.: 1{eh'tvior of Materials Un(ler Con-

(litions of ThermM Stress. NACA Itep. 1170, 1(`}54.

(Supersedes NACA TN 2933.)

S. Frederick, Philip It. : Test Report on Failure of a

J-33 Turbine Wheel. Rep. No. WCRT L53-51, Ma-

teriMs Lnt)., WADC, July 20, 1953.

9. Frederick, l'hilii) II. : Test ]_.eport on Cracked Pin

lloles in a J-33-A-35 Turbine Wheel. Rep. No.

WRCT L5340, WAI)C, July 15, 1953.

10. ),h_ck, J. E. : Investi_ztltion of Cr'teked Enrly Model

J33 Turbine Wheels+ Teeh. Note WCLI' 53 32(`|,

_VADC, l)ee. 11, 1953.

ll. Kenne(ly, R. It. : Test Report on J-65 Turl)ine Wheel.

Rep. No. W(;IV[! 1,54_tl, M,_terials Lab., WAI)C,

July 27, 1954.

12. Meyer, Andr6 J., Jr., Kaufman, Albert, 'ntd Caywood,

W.C.: Investigation of Mechaniea] Fastenings for

Solid Turbine l{lades Made from I)uetile Mate-

rials. NACA R3I E54E21, 1(`)54.

13. Newman, D. P., Jones, M. it., and Brown, W. F., Jr. :

Time-Temperature Dependence of the Notch Effect

and Influence of Notch I)epth in Stress Rupture

Tests oil a Cr-Mo-V Steel. Proe. ASTM, vol. 53,

1953, pp. 677-692.

14. An(re.: llundbook Supplen|ent--Ilandt)ook Overhaul

Instructions 5Io(lels J35-A-'21 "tnd -A-21A Air-

craft Engines. TAk 2J J35_t3T, USAF, N-v. 1(`),

1<.)54.

15. Anon. : H_m<ll)ook Service Itlstruetions Model J35-

(_E 9 and A 15 Aircr_lft I_ngines. AN 021_-

]05CB-2, USAF ,aml Bur. +_,ero., Apr. 1, 1!_48. (Re-

vised M'ty 25, 1948.)

16. Anon. : Ilan(ll,)ok Servire lnstrueti<ms--.Mothqs J35-

C-3, A-5,-9, -11, -13, -15, GE-7,-9,-11, and -13

Airer_tft l+]ngin_'s (wilh ]Iydraulie Type l,'uel Con-

trols). AN 021;-105CA-2, USAF and I',ur. Aero.,

Sept. ]7, 1947. (Revised Oct. 3, 1949.)

17. Anon. : Remowtl of Overteml)erature Turbine Wheels

--J47 Engitms. T.(). 2J-J47-358, USAF, Jtme 7,

] 954.

3;{496'_' GI 11



CHAPTER IX

ROLLING-CONTACT BEARINGS

By WILLIAM J. ANDBRSON and ]']D'dOND E. BISSON

SUMMARY

2'hc carious types of bea_qny fail, ure, the meeha-

nis_ns of failuxe of these _,arious types, and pos-
sible methods of improving bearing _.eliability a_'e

diseu, sed. Fatigue life, which is of prima_'y im-

pel'tahoe to ball thaw.st bearings, can be increased
/ 1 \

by /'C([ _I (*_It (/ _oa4[. (l_f60C _). _It pF_se,#, it

appea_'s Iwees_'a W to schedule bectriny replace-

"reelers on the basis o/ expected fatOue life. An

exeessice .wca_" fate i_dieates the _eed for rede-

,,.iyn,. Under" eol_diti(ms of _rmal wear, bearing

rephwement can be ba._'ed o_ mea,*u, red clearances

ip_ the beari,_ W at i_qmction periods. Fo_' ext_'eme

bounda_ T lubrleatio_ failures, _chen exee,_sive

metal transfer oee_¢rs at the s/hUng surfaces, _na-

terial change a_d redesign al'e h_dicated.
I]earl.ny "relhtbillty can be ira,proved b9 (1) ad-

ditiomtl h_formation, (2) bettei" faih_re detection
devices, a_,l (3) better maintem_nee practice.

BearhLq temperatu_'c aveeb_ration, seems to be a

t, aram( te_, that ea_ be .used to wa_'l_ of imm.i_ent

beari_Lq failure.

lmp_'ocements il_, manufactu_'i_y standards and

h_. quality eont_'ol should result i_, improved bear-

h_g reliability.
INTRODUCTION

One of the faclors related directly to relia-

bility of the aircraft, gas-turbine engine is the

reliability of the engine bearings. The influ-

ence of bearing failures on en_ne reliability, the

factors that influence bearing reliability, and

measures that may improve bearing reliability

are discussed in this chapter.

Most bearings of aircraft gas-turbine en_nes

are of the rolling-contact type, and, therefore,

this report, discusses only this type. Typical

examples of rolling-contact bearings showing the
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various coml)onents are presented in figure 1;

typicM turbine-engine bearing arrangements are

showr_ in figure 2. llolling-contact bearings are

preferred (ref. 1) over hydrodynamic (sleeve)

beari_ gs because they

(1) llequire less starting torque

(2) Are nmch less sensitive to oil-th)w inier-

rul)ti( ns

(3) Need less oil flow

(4) Impose a lower cooling load

_ -0_1 jet-

)_ -Ouler race
- Roller BQI

Cage

dnner race

FIGVR.: 1. -Tyl)ical high-st)et'd I)varings for turbine

(,ngines.

Th, frequency and the severi W of engine dam-

age e:_used by bearing failures are discussed with

respe_ t to the available turbojet-engine bearing-

failme dat'_. Bearing reliability is affected by

(1) hearing quality, (2) severity of application,

and (3) type of care and handling a bearing gets

throughout its life. Factors that, determine bear-

ing (laality include material quality control, ma-

terial inspection methods, tolerances, and dimen-
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(
• Roller bearing- ,

Ball thrust bearin 9

(a)

. - Roller bearing

• Ball thrust bearing _

(b)

(a) Single-rotor engine,

(b) Two-spool engine (frmn ref. l, "Lppen(tix C).

FmL'RE 2.--Illustrative turbim'-enginc bearing

arrangements.

sional inspection methods. Factors relevant to

severity of application include operating condi-

tions such as speed, tempet'ature, amount of lu-

brication at. starting, and continuity of oil flow.

Factors of importauce to care and handling in-

elude overhaul and maintenance practices such as

inspection methods as well as bearing replace-

ment and removal practices. These factors are
discussed herein.

,BEARING FAILURES IN TURBOJET ENGINES

Analysis was made of U.S. Air Force Disas-

sembly Inspection ]leport (DIR's) (for Aug. to

Nov., 1953) on overhaul of 769 turbojet engines.

The statistical data resulting from the analysis

(discussed in considerable detail in oh. II) show

considerable variation in bearing difficulty be-

tween different engine types, different models

of the same engine, and even in different instal-

lations of the same engine model. The varia-

tion is illustrated by the following statistics on

four engine types. Of these engines, the per-

centage that had main bearings replaced at over-

haul varied from 24 for one engine type to 60

for anoflmr engine tyi)e ; replacement of acces-

sory bearings varied from P to 64 percent.

Of the same engines, those sent to overhaul

because of main-bearing failures varied from 0

to 7 percent for the several types. While the

number is low, the overliaul life of the average

engine was also quite ]ow (115 to 180 hr).
Longer running time may have considerable ef-

fect on main-bearing failures, as is discussed

later.

Bearing failure frequencies for eight groups

of engines (identified by code) are shown in

table I. As noted on this table, both primary

and total bearing failure columns include main

and accessory bearings.

Further statistics on reasons for sending J33

and ,135 engines to overhaul qre given in ref-

TABI,E I.--BEAIIIN(; I:AILI'III_; t?I/J,;QUI,]NCY I)ATA F()ll VAII.I{)US ENGINES

[Based on ITSAF Disassembly Ins )ection Reports.]

Engine

C-6
C-7
B-3
B-4
B-7

B-8
B-9
B-10

Number of

onginps

39
2ll

73
32
87
93
75

159

]_[,txilnllnl

r tl.lHfing
time, hr

650
885
634
493
165
390
447
301

Pore(mr of ongincs ill
which bearing failures
v,,(,re foHnd (a)

Total

]'rimary (secondary
+ prinmry)

lg 92
8 6,t
0 66
6 59
9 72
6 17

12 36
4 30

• Includes main and accessory bearings.
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1000 i I

Engines with-

I Primary bearing failure

800

Secondary bearing failure

-----'-] Other failure

20O

I I I f

2
- 600

F
400

[2:

I I I I
0 20 40 60 80 _00 _2) _40 _60 _80 2(_0 2t0

Number of engines failed

Fmim-: 3. Bearing-failure (lat:t for group of 211 engines (codc, C 7 . Data from USA];' I)isassembly Insl)eclion Reports

(Aug. to Nov., 1953:.

erence 2; these data show that bearings have

been an important reason.

EFFECT OF RUNNING TIME ON BEARING RELIABILITY

Engine bearing failures sustained by 211 en-

gines (code, C-7) are shown by failure type in

tile bar gral)h of figure 3. A_ll engines were new
prior to the service shown, so that all bearings

were new at indicated zero running tiIne. The

data of figure 3 are shown plotted in figure 4 as

I)I'inmry and total (primary t)lus secondary)

f'lilure: a,,zainst engine running tin,e; these ternls

$ E®: I

<n

g
"6 8

Q- X2_

.- ;2
__ E_ 2
E

¢) o I00 200 300 400 500 600 700 800 900

Engine running time, hr

FIGURE 4.--Bearing failures found in overhaul of 211

engin(_s (code, C-7). Data from USAF Disassembly

Inspection lh'l)ort_ (Aug. to Nov., 1.q53).

are defined as folhiws: (1) Priinary bearing fail-

ures are flmse that caused the engine to be sent

to overh'lul: (2) second'u'y bearing f,dlnres are

bearing conditions found at overhaul that are

judge([ to re(tuire l)e'u'ing replacement. (Such

conditions are not, however, the prinlary reason

for o_erhaul of the engine.)

The curves of figure 4 show that the total of

priIna'y plus secondary f,tilures is quite high for

engiii(s with long rmming tinles.
]}co:ruse of weaknesses in the data, no further

statist cal analysis of these data is inade. These
weaknesses are :

(1) Bearing history is not always known with
eertail ly: bearings may be repl'leed in the tiehl

wittIol_t the replacement being noted on the en-

gine r _eord.
(2) The most serious bearing f'lilures (that is,

those hat cause destruction of an engine and a

crash) wouhl not al)l)ear in the DIR data. ])IR's

are w,itten only for engines that ('an be over-
haule(.

(3) Engine failurt, s occur from 't variety of
causes It is difficult to isohlte bearing slatisties

for analysis, and when bearing failures are sepa-
rated, the resulting sample size is small.

Bes?des these weaknesses in data for new en-

gines, an additional weakness exists in similar

data for overhauled engines; frequently the data
do no:, account for the many be,lrings replaced
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at previous overhauls, llemov'd of lightly dam-

aged bearings undoubtedly prevents nlany pri-

mary bearing failures. Because of tile gravity

of accidents caused by bearing faihlres and be-
cause of the h)w bearing ('()st relative to overhaul

cost, present l)r'_etice is to reI)lace bearings at the

sli_rhtest evidence of deteri(n'alion. Itence, a

large l>ereentage of 1)e'u'ings are rei)laced 'it over-
haul.
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F1Gt:RE 5.---B('arinK failm.o rosull illg, front oil int(,rruption.

Fmgin(, with jet lubrication of Iw:_rin_s. Photogr:qfil

shows ca_e has faih,d oomph,rely. Failure occurred 17

minut(,s aftor oil inl['rrul)lion (from r('f. I, "tI)p('n(tix B).

Oth(,r l)holo_raphs of this clmi,w in filZures 6 "rod 7.

EFFECT OF BEARING FAILURES ON ENGINE FAILURE

Figures 5 to 7 (iaken from ref. 1, appendix B)

show engine damage llmt occurred when bear-

ing failures progressed 1)eyond the initial stage.

These l)hot()gral)hs are of -m engine tesled to
determine the lime an engine can run after com-

plete stoppage of the oil supply. Two engines

mm in 1he tests described in al)l)endix B of ref-
erence 1 ran 17 aml 2(; mim,tes 1)efore beal'iilg

failure and subsequent engine failure. The en-

gines were eomph, tely desiroye(l, 'rod the test

stands in which ihey were mounted were d'ml-

aged.
BEARING-FAILURE TYPES

Both the exact nature of a be'u'ing failure and

the symptoms that accompany it vary widely with

lhe tyl)e ;ll)(l the slage of the failure. 1Vhen a

];'r_:nE O.--Comprossor damage resulling from })v.ring

faihlr(! in oi[-intvrrul)lion t(,sl, (from ref. 1, :tpp(,ndix B).

bearing does not function as well as when new,
but still allows lhe mechanism of which it: is a

coml)onent_ to ol)erate satisfactorily, lhe terms

"early failure" or "incil)ient failure;' can be used.

The 1)resence of a fatigue pit on a race or a

roiling element, or lhe transfer of ('t_Fe material

I()the (,age-h)cating surface, or heavy cage wear

would be ela_st,d as incipient failm'es. When a

bearing seizes or disinte(q'ales,_ , the failm'e is

total. In _he case of a total bearing failure,

wreckage of ihe eno'ine may occur.

Bearing faihu'es may l)e divided into two gen-

eral groul)S : lime-dependent and time-independ-

ent. The lime-dependent failure tyl)eS include:

(1) Fatigue

(2) Wear

FI(H'IC, E 7.--Engi]m torn from test lltOllllt as rosu/t of

Ollgin(} stoppag_ })y b_,,lring fmJm'o iJi oil-interrlJl)lion

tests (from ref. 1, apl)(,ndix B).
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Tim t ime-independen! faihu'e types include :

(1) Extreme boundary lubrication

(o) Brinelling

(3) Misalinement

Corrosion is a special failure type; it can be

either time-dependent or time-independent tie-

pending on circumstances. For gas-turbine en-

gines, corrosion has not been a major difficulty.

Corrosion damage may result from presence of

water or corrosive materials, such as the oxi-

dation products of the lubricant. Corrosion of

the bearing materials results in surface pitting
that. Pan accelerate bearing failure.

Failure of bearings t)ecau_e of dirt is also time-

independent. In particular, precision bearings

are extremely sensitive to dirt and other contami-

nants. NACA inspecti,m of "t small sample of

eondenmed bearings from an Air Force overhaul

base showed that dirt was a major ('ause of bear-

in_ damage; the damage appeared as scratched

rolling elements and raves. Fro" this sample of

bearings, however, the average rlmning time was
lOW.

Time-dependent failures alone wouhl probably

follow an approximately nm'mal or "wear-out"

(Gaussian) distritmtion. The time-independent

failures, which can be influenced by environment,

might be expecied to follow a chance law. Poor

designs, materials, or assembly can accelerate

time-independent as well as time-dependent
failures.

TIME-DEPENDENT FAILURES

t'atigue.--Fatigue life of a bearing is deiined as
the number of revolutions that it makes before a

fatigue pit fi1_,t deveh)ps in the bearing materiM.

Bearing-life ratings are 1)ased on the 10-percent-

failure (90-percent-survival) point. A fati_m-

failure distribution curve for a group of ball

bearings is shown in figure 8 (data from ref. 3).

Fatigue-failure distributions for other groups of

rolling-contact bearings will be similar to this
ellrve.

Fatigue in a rolling-contact bearing appears

as a pit. or spalled area in the track of either

race or on a rolling element. A typical fatigue

pit is also shown in figure 8. In most ball bear-

ing designs the inner race is nmst susceptible to

fatigue because an elementary volume of mate-

rial in this race is stressed at a higher frequency

FTypicol fotlgue pii]

99

_- 7{)
C
¢o

"6 6O

(1)

_" 40

IC

6

_-/i

[ 1 1 I l I 1
I0 20 30 40 50 60 70

Life, revolutions

I I
80 90x106

Fmual: &--Fatigue fidlur(_ curve, for bearings (6309 size)

of SAI? 52100 ste('l, l/'Mi:d load, 4240 pounds; speed,

1500 rpm; grease lubrication at room t emper'tture (data

from ref. B).

tlmu ,_I'e similar elements of the outer race or of

a ball or roller.

For practical loads, ball thrust, bearings do not

have ,n endurance limit; this is in contrast to

other types of f_tigme where endurance limits
exist. Even if all other failure modes were elimi-

nated, fatigue failures would still occur. There

is, hov ever, all inverse cubic relation between load
/ 1 k

and li: (life <  /;6aQ so that life i,   'eases
%

marke lly with a relatively small decrease in load.

In a roller bearing there is essentially line con-
tact b(tween roller and race, and in a ball bear-

ing tl-ere is essentially point contact between

ball ar d race. Hence, for the same bearing load,

the ball bearing has a higher contact stress. Be-
cause ,,f the line contact and the small external

loads ,,n roller bearings in turbine enzines, the

contain stresses are low and fatigue life should

be qui;e long. Hence, fatigue should not be a

major problem in roller bearings. The point
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to)

(b)

contact and high external loads of ball bearings

in turbine engines, however, produce contact

stresses that 'ire high, and fatigue life can be-

come of major importance. For example, a typi-

cal turbojet engine roller bearing (75-mm bore,

10,000 rpm, and 1000-lb radial lo._d) would have

•_ theoretical fatigue life of 10,000 hours. A

typical turbojet engine ball bearing (110-ram

bore, 10,000 rpm, and 5000-1b thrust load) would

have a theoretical fatigue life of 110 hours. Fa-

tigue life will probably be shorter with the newer

engines because of lhe trend to higher thrust loads

(ref. 1, appendix C).

Fatigue failures in various stages are shown in

figure 9. While a faligue failure is not always

catastrophic, there is very ]ittle information on

the time from first appearance of fatigue failure,

as indicated by pits such as shown in figure 9(a),
and final failure. Until more information is

available, replacement must be scheduled on the

basis of curves such as that of figure 8.

Wear.--The wear of a rolling-contact bearing

seems to be influenced strongly by speed and

only slightly by load. Excessive wear nmy be

caused by poor bearing design, by use of an in-

compatible material combination, or by inade-

qu:tte lubrication (which may 1)e caused by poor

design).

Under normal conditions, little wear of the

races 'rod rolling clemens of rolling-contact bear-

ings oecursl wear is light primarily because of

low sliding velocities. The critieal wear areas in

a rolling-contact bearing are the cage-locating

surface and the cage pockets (refs. 1 and 4) ; at

these locations the surf:tees are in pure sliding
m.tion, usually at. high slidin_r velocities.

The cage-locating surfaces are, in reality, plain

journal bearings of very small length in com-
parison to their diameter (ref. 1, appendix A);

journal bearings of low length-to-diameter ratio

]tare very low load capacities. In consequence,

the cage-locating surfaces are subjected to bound-

au< lubrication conditions at all times; occa-

sionally they are subjected to extreme boundary
lubrication conditions. The factors involved are

shown in the curves and sketches of figure 10.

There are plotted, for a typical journal bearing,

Load

g

"5
• . _--Roller

,;...,,,\ "_Inner roce

{_ Fluid lubricationE

u_ (Viscosity) (rpm)

Load

FmuR_ 10.--lh)undary and fluid htbricalion.
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friction coelticient and tilm thickness against the

l)arameter Z.V/I), wlJi('h is viscosity nmltil)lied by

speed and divided I)y load. Boundary lubrica-
tion exists to the left. of the vertical line and

hydrodynanfic or (hick-lilm lubrication to tlte

right, in hydrodynamic lubrication, the fluid

tihn is thick enough that in) surface conlaet takes

place, as is shown in the lower sketch, in bound-

ary lubrication, the lubricant fihn is so thin that

the Sul'fat'e asperities make contact through the

tilm, as dn)wn in the upper sketch. Film thick-

nesses for boundary and for hy(h'odymunh_ con-
dill(ms are shown in the lower curve. Tiros, in

]ty(h'o(tyn;Mnie lubric'_tion the load is supported

on the lubricant film and the 1)roper(ies of (he

hd)ricant are important; in boundary lubrica-

tion, the loa(1 is SUl)por(ed primarily by solid

contacts antl the l)roperties of the solids are im-

l)ort'mt in (letermining the wear and friction
cha racteristies.

Tlms, for the coml)onent._ in which sliding

takes 1)lace, it is imI)ortant to use material com-

binali()ns with good sliding friction ch,n'acteris-

tics, that is, with good "antiweld" properties

(ref. 5). (h_od anliweld properties are defined

as the .fl)ility to wear without violent welding

and adhesion at the surfaces under bmmdary

lubrication conditions. It. is possible, however,

that even materials which have adequate anti-

wehl properties under bmmdary lubrication con-

(litions may show excessive welding and adhe-
sion under extreme I)oundary-lubricalion condi-
tions.

Under almormal conditions, wear of the races

and rolling elements can become excessive. [For
example, excessive cage slip can acorn' when l)ear-

ings are operated at high speeds and light loads

(ref. 6); roller or ball skidding is also possible
mulet the_e conditions. Since the radial loads

are usually small in the gas-turbine engine, the

bearings carrying only radial lo:nls are some-

times subject to these conditions.

Data showing (hat cage slip in high-speed

roller bearings produces severe roller and cage
wear are included in reference 7. The effect of

rolling-element wear wouhl be to increase bear-

ing radial clearance. In an engine, (his increase

would allow radial displqcement of the shaft,

which could lead to serious engine damage and

possible stoppage. There is also the chance that

exces, ive rolling-element, wear can cquse bearing

failure. Excessive wear also allows we'tr parti-
cles to aeemmflate in the lubric'mt and 1o be

cir('ul _(e(l thr()uglmut the engine: these l)articles

can c:mse damage io other bearings,., sl)lines , or

gears.
1)terence of wear partMes in lhe oil and oil

filter might be used as an indication of excessive

wear ,'ale in the bearings.

Since the major weqr dilticulties occur 'tt the

cage-l.)eating surface, correct ire measures involve

iml)l'().,,ing (he conditions a( this h)caiion, lie-
design and material clPulge can improve these

conditions. Oil flow e:m 1)e improved or cage

contact sh'esses decreased by redesign. 1'roper

choi,,e of m'tterials can reduce wear l)v re(h,,ing

we](li]Lg and a(lhesion at the contacting surfaces.
While wear is a complex phenomenon, a sim-

plified illustrative we,tr Cllt've for a p'fir (-)f rub-

1)ing sm'faces is shown in figure 11(a) t() illus-

Irate a nmnber of points. Under ordinary

eondit:ons, the initial oi)eralion of wearing sur-
faces (an be lerllled, it "wear-in" or ;:run-in" pe-

riod. After (he wear-in l)eriod is <:<)replete, a

constald, wear rate obt'dns for a l>eriod ()f time.

At sm_m lqter time, (he wear rate increases rap-

idly ald (he period following the change in rate

is tenlied "wear-out." Also included in figure

_We _[-i<' "L Constont .wear rate

1_I I

! Wear-out"l

-It - l

! I I

I Time between
t- I
I inspections I

A B
Time

J ZLimit of
allowable
wear

(a) Illustrative wear curve showing three periods.

Fmua_ 11.--Illustrative and aehml curves of wear plotted
against time.
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(c) \\'par ,,f nit,'id,'d pi>ton rings ma(ler abrasive condit ions

(dH"I l('-ts)_ lhi_ cm'v_. _llov,'s '_COllSttl, llt, v.'el),r rale" and

"w('ar-,)lH" p('ri<)ds (dala from I'('f. 20).

I"l(;UFtl.; 1t. C_mcluded. Illustrative and actu-d curve,,,

of wct_r 1)h_t ted against time.

ll(a) for illustl'alivc l)Url)oses is a line tel)re-

senting a limit of allowal)le wear. The limit t)f

allowahle wear occurs at time 1¢. In scheduling

})et/l'}ll_ re|)lltcelllell/_ a('cOllll[, lllllSt })e lllkell of

1he wear [h'tt will occur belween inspecti(ms, s()

lhat bearing l'el)l:wemenl must he made at or

1)efore time A in fi_ure ll(a). This will en-
sm_, thai: the limil of allowahle wear will not: 1,e

vea('hed lmlween inspections.

Actual wear <'re'yes for recil)ro<'alinK-engine

lfiSt()n rinks are included in tigul'es ]l(b) and

(c) to illustrate the various sl'_ges ,>f wear. I_e-

cause many factors (such as teml)eralm'e , speed,
hind, 'rod luln'i('ation c()n(liti,)ns) intluence ll,e

time a,t, which we:u'-out hegins, l)rediction (if

hearing wear musl he hased on exl)erience with

the I)earin_s in :t sl)ecitlc apl)lic'nion.

It is recognized lhat it may he ditticttlt to base

l_eal'ing rel)lacement on wear rate because of the

following reasons:

(1) Critical wear may lie occm, rin,_ al some

1)oi_r inaccessihle wilhmd complete disasseml)ly

(if the he:trine.

('2) An eslaldishment of 1)earing wear nile i:

del)endent (in an exact l{n,_wle(17e o1! the original

bearing clearances because tolerances on cage
dianletral <']e'_r:tm!e_ for examl)le , are fairly
lil)eral.

(3) There may be difficulties in determining
tl_e limit ()t' alh)w'fl)le wear.

TIME-INDEPENDENT FAILURES

Extreme boundary lubricati0n.--Under tend it i_,ns
of extreme l)oun(larv lul)rication, avera,,e oil-tilm

lhickness is even less lh:tn in 1)mmdary hd)ri(.a-

lion (fig. 10) ; metal-to-met:d contact is therefore

IllOFe, seuere_ l/l](l severe sllrface (]'lllla_e lll()I'e

likely. This sm'face damage 'It)pears as violent
welding and adhesion, as well as excessive wear.

The c<>n<litions ]ea(lin_r /<> extreme boundary
luhrication are those which decrease the value of

the parameter ZN/t'. These conditions are as
follows :

(l) Iligh loads

(_) Iligh lemperatures

(3) Low viscosity

(4) Lack of adequate luhricant, supply

A tyl>ic'd ex'unple of smearing of the c't,..,e
m'derial on the rollers, the outer race, and lhe

cage pockels llmt resulled from inadequate lu-

brication is shown in figure 1:2). Extreme bound-
534,q62 61 -- l 2
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ary lul)ri,'alion may resull, in either heavy cage
,veaI" of ill ex('essive lll(,lal lrallsfer l)etween /lie

ca_q'e and the surfaces aR'ainst whi('h the cage

rubs (its h.'alin_" ra,'e and the rollin,,,.." elemenls).

(o)

Brineiling.--True brinelling or denting of the
races i.- produced by l)l'essure or impact and re-

suits h an indent'ition because of 1)lastie tlow.

Loads tl)ove the static capacity _)f the bearing"

(the lo:Ld above which pl'lstic thin [..curs) must.

be applied lo 1)reduce Irue hrinellinK, lTnless

the bearing is improperly chosen or handled, true

brinelling will not occm'.

"Fal:;e brinelling" is a Sl)ecial case of fretling

(t'rettiI_g corrosion, fridi(m oxidali,m). Fret-

ling is 1he surface failure that o{.(:vrs when closely

tltlino" melal surfaces (su(.h as a rollin_ element

am[ ra(e) Cxl)erience slight relalive mellon over

long" 1)_.riods ,)t' time. False 1)rinellin_" of en-

gine bearings usually o(.curs when the engine is

subjected to vibration during shipping or when

(c)

!a) Smearin_ on cylindrieM rolh'rs.

(h) Smenrin_ (m ett_(, l)ot'ket_.

((') Snl(,aring ()n ()liter l'l[('(,'_,Illyi

Fm(-lu,: 12. Typical cylindricM-r(dh.r-bearing failur('

caused by ina(h.qu'de luhricaii(m between rollers and

('age pockets (from r('f. 15).

,_ Indentahons

FI(;VRE 13.--False hrinellin_ ()f oul('r race (ff d[)uble-row

self-'tl:nintz ball bearing. ('aus('d by vibrati,m wilhmJt.

I)(,aring rolalioll (froJlt r('f. 15).

standina" on a vibrating t_latforln. Such dam-

age c'u usuqllv be 1)rexenled by e]iminating or
al)l)reci fl)lv decreasing (he \il)l'alion at (he t)ear-

ings. '?his (yl)e of damage can lake 1)la('e under

loads *_r below the static-load cal)acily of the

surfacee. False brinelling in a double-row, self-

alining ball bearing is sh( \vn in tlgure 13.

_isal.nement.--Bearing races may be misalined

with e: ch olher because of (1) poor assembly,

(2) nmnufactul'ing deviaiions, or (3) dislortion

(littieulties. These may be caused, resl)eciively ,

by (1) imI)roper mounting because of dirt; (2)

out-of-:(tuare shaft shoulders or housings; and

(3) me :hanical and thermal stresses in the shaft,

bearing housing, or engine frame.

Misalinement may cause several types of bear-

ing faFure. Parts of a roller bearing that failed

because of misalinement are shown in figure 14;

this be:tring shows evidence that misalinement



FACTORS TtIAT AFFECT OPERATIONAL RELIABILITY OF TURBOJET ENGINES 1(;9

]_ Cl'l

[

]:i_;vm_; 1.1. -(!ylindrical roller I_('arin,.Z, that faih'd becau.-('

of misalined hmd.

altered lhe load from a fairly uniform distribu-

lion across the length of the rollers to a very

heavy load near one end of the rollers. This

caused premature surface failure of both r'mes in

the pl,me of tile magnified load. Both races are

flaked in this region.

Tile tinle between incipient failure and total

failure, from mis'tlinement causes, is probably

long enough to I)ernlit total failures of this type

to be forestalled by scheduled inspections. Vi-

bration measurements may possibly be used to

detect failures of lifts type.

OPERATING PROBLEMS INFLUENCING
RELIABILITY

There are "_ number of operating conditions

that strongly influence bearing reliability. These

conditions and a number of suggested checks to

make on the engines (and bearings) in aircr'lft

are discussed in the following sections.

HIGH SPEEDS

Operation at. the high rot'titre speeds of air-

craft gas-turbine engines imposes a general lu-

brication problem in the use of rolling-contact

bearings. Bearings in current engines run at DN

values (bearing bore in mm times shaft speed in

rpm) lip to about 1.5 million. Few operational

data are available at higher speeds, although some

very limited experimental data are available at

DN values up to 2.2 million (ref. 7). Adequate

lubrication at the cage-locating surface, neees-

s'try because of the high sliding velocity, is diffi-

cult to achieve under lhe operating conditions

imposed on aircrafls gas-turbine bearings, and is

one of tile important, reasons for the high re-

I)laeement rate of some engine bearings. Centrif-

ugal forces acting on the oil within the bearing

lend l() lhrow it. radially outward, away from

the (!age-locating sm'face in l)e'_rings e(luipped

wilh inner-race-riding <"t,m<

NIGH TEMPERATURES

In engines of ohl design in present operalion,

maximum bearing temperature is approximately

350 ° F (ref. 5). At this temperature, SAE 50100

steel and silver-plated bronze are generally the

1)e.aring and cage materials, respectively. In en-

gines of more recent, design, bearing temper'ltures

have increased to 500 ° F (ref. 5). New mate-

rials are necessary and tool steels or intermediate

high-temperature steels are being utilized. Sih'er-
pla, ted bronze is still used as the cage materi.d.

These materials may not be completely satis-

factory at 500 ° F. Research is in progress on

both race and cage materials.

For engines of future design, bearing teml>era-

tares as high as 750 ° F are anticipated (ref. 5).

For both the 500 ° and 750 ° F temperature levels,

the molybdenum tool steels are being studied. The
molybdenum t_)ol steels have adequate hardness

and dimensional stability at, these teml)eratures.

Molybdenum tool steels produced by ordinary
melting methods have not, in general, shown ade-

quate fatigue life (ref. 8). It is shown iu ref-
erence 8 that it is necessary to use vacuum-melted

tool steels to obtain a lo'ld capacity (or life)

equivalent to that of SAE 52100 bearings. The
data of reference 8 are summarized in table II.

The bearings made of consumable eleetrode
vacuum-melted M-50 alloy had a load capacity

greater than standard SAE 5_o100 bearings at

room temperature and 't load capacity (50-per-

cent failure point) at 450 ° F equivalent to stand-

ard SAE 52100 bearings at. room temperature

(an AFBMA load rating of 100 percent). It

must be borne in mind that commercial grades

of the standard bearing steel, SAE 5_0100, are

satisfactory only because of many years of metal-

lurgieal development. Figure 15 shows the

marked improvement in fatigue life of SAE

5_0100 steel bearings made during a _04-year pe-

riod. During this period, nletallnrgical and



170 TECHNICAIJ REPOI{T l{ 51--NATI()NAL AERONAU+IICS AND SPACE A1)Y, IINISTI{ATION

"FABI,F, 1[. -1A)A1) ('AI'A(qTII,]S 1,'()1{ B],]AI{IN(IS I'ABRI(_AT],;I) I,'II()M T<)()L STI,;I+;LS

[l)_mL frmn ref. +_]

l,o't(t capacity, per(u,nl
AIrBMA basic load

rating (")
Mat(.rial Tetnl)er- _....

+it ttrt+ ,ql)- l)('r(!('ilt10-lh,r(u,nt

faihlrl'

failur'o I )°int
point

77 7O
64 64
S3 !11

76 78
(_l) 54

132 122
6,t 77

Consnlnnbh+ vhq!lrode vacuum i M-50 l{oom 144 170
nl.(,lte(t ! M-5(1 -15{) ° F !}:{ I(R)

t

AI"BMA (Anti-Friction BearilIg 3Ialltlfactllrers Association) basic I)ad rat[IIg for SAE 52100 hoarin_s is I(R) IJercent.

,M{+hing IW'tct ice

]'_:t:',i(' itt'{' _[ 10 l{,oOlll

M I0 450 ° F
M-I Room

' Y,I -1 Room
M-I 450 ° F

hMuclion fur(mr, vat,ram lnolle(l _[ +1 l{.o(nn
i M 1 -150 ° I+'

nmnttl'acturin,, r itnl)r<)vt't_ll'nts rt, suIie(l in a ten-

fold im'rease in l'ati_u(, life. It :tl)pears tim(

(Ire M lyl)e t,)()l steels, with rt, linenmnls ill meh-

inff t(,ehni(lues, will ln'otha'e I)earin,,z's with sat-

isftu't ry :t'atie'ue life, but the I)earing's will cost
m<n'e I_e('nuse of imq'eas(,d material ('(isis and

nm,'l,ininff linles (atq)t,n(lix 11, ref. 1).

_. • -Be<3r;ng Monufac- Tested

EE _-- + size lured

_)tr I . o 6408 1920 I920-1924
_ 440x10 o- [] 6207 1944 1945-1950.
_-4oo'M---u-_:- t " + b --
_a--- 360 --_--_--- 4- t- ----

c8 240 - • _ "% - _-]

:s 200 J-- - _ J [ 6
I0 I00 10130 IO,O00xlO

Inner-roce life, revolutions

l:mt:itt+; 15. Imt)rovem('t_t in fatigue life of SAI"+ 521011

steel t>earin_s front 1!1211 to 1944 (from r('f. 9).

.Most t!a_e materials now in use have satisfa('-

|<n'y slrezl_tlt at l,resenl ol)eraling tenll)eratures

but lllay lit)| have tit exl)evte(l tenlperatures (ref.

1); ferrous or ni('kel alloys lllaV be Iaeeessary

al lilt, hi_her lellll)t, rallll'e levels.

]+ecause of their hi+zh volatility, Inineral oil

]ul)ri<,ants do not, appear l)romising as lubri-

cants for future high-teml)erature bearings (refs.

,5 and 9). Low-tempera( ure htbrieat ion (-6o° F)

requires low-viscosity ]ul)rieants; high-tempera-

lure ] ul)rieat ion re(lui,'t,s l<m+-v(dat lilly lubri,.am s.

l'elrl+lemn <ills of low viscosity t,Wll>orate ex-

('essixt,ly fast at lhe llearinff t(,ml)eralures ex-

peele+[ in future eli,'tiles. The ])etrohqtln alld

('henli<+al indttslries tire (h, velol_in ff synthetie lu-

In'iea+ds for use at high olleratin _ leml)('ralttres:

synl]nqic ]lll)l'i(:alllS are ]loxv availtllde lllat have

aeeel)tallly h)w v.hllilily at I>earin_' lelllpel'allll'es

of 5f0 ° l: and his<) Ineet the ]ow-lellll)eraltlre

sttu'li t_ re(luirenlent. ]'r()I_t,rlies of stone syn-

lheti(' ]ul)rir:ults art' listed in table II I: lni|itary

speeil <+ati(m (MIL I,-TSI)S) r(,quirt,menls as well

:Is prq)erties <)f a l)etr<)lemn lul)rieant are also

]isled for c<+ml)ttris(m. The l>elroleum and tile

(liester are used in era'rent .let enffi.(,s. II np-

l)e'u's mdikely lhaI: a liquid hll}ri(.anl can be
devis( d that will be sal isfm!lory at lmlk lul)rieant

lenll)( t'tlttll't,s much al)ove 5011 ° F (refs. 71 and 9).

For s it+sonic ttir('rll f[,! llulk ]ul)ril.ant (eml)eralures

are e)peeled to be lower th'l+ll 4()() ° F; for Sul)er-

sonic aireraft, bull¢ ]utwieanl leliil)eraliires Itl'e

expee e(l to ex('eed 400 ° F. The alternatives to

devel<,l)in_z a liqttid ]ul)ri(!'mt with lhe required

stabil ly at high lelnl)erature are (1) In'ovision

of _fft',,'tter 1)earinff ('<)<)linff, by means other than
the h bri<"tnt: (_) use of :t solid luln'iettnt (ref.

10); (3) use of 't gaseous lubricant (ref. 11):

or (4) use of a gas l)earin+z, su(,h as 'tn exter-

nMly pressurized air bettrinff (ref. 5). Ea(+t of

these alternatives undoubtedly (,reales 1)roblems

that l,ave not ,'is set 1)een eomplelely evalua(ed.
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TABI,E IH.-. I'I_()I)EIVI'IF, S OF TYPICAl, SYNTII]CI'I(: LUlH¢I('ANTS

/
Viscosilv, (!o list.ekes, ,t A S T. M l (:. (). (*. ] C. (). C.

Fluid .... '' ...... l)<mr fl'_sh I fire

] poin( p,)i,_j, [ poi,)t,

65 ° F - 40 o l," 100 ° F 210 ° 1" ] ° F
0 _ - " i ...................;3.Z---,.....,-3 71 °' )?

(;,'rex) ...... (:_fi,_) , 385 ....

Petroleum:

MII,-04$0SIA (_:rade I010) ............ _ . ___2 7 _ l 300 [ ....

I)icslers :
Di(2-ethvlhexvl)sebacate .............. 8.97 _ 12. 78 ] 3.32 - 70 440 472

Di(2-cthylhex_q)sebacate ohm additives__ 16, 000 2700 20. 8 5. 3 - 75 450 ____475

Polyalkylene glycols (designated by viscosity
at 100 ° F):

Water sol)l})le, 8.9 cc, nlJstokes ................. 1800 8. 9 2. 4 - 8,5 260 2S5
Water insohfl)h,, 7.4 cenlislokes ....... 4587 905 8 2.5g 70 270 aas

a For ('0Illp2,risoll t)llrl)oses,

LACK OF LUBRICATION AT STARTING

Vfhen an engine is started, the bearings are,

for a time, lubricated only I)y lhe hlbrieant ]eft

in the bearing from the 1)revious ol)eration. In

l)resent engines, "soak-back" of heat from the

rolor evaI)orales and I)akes "lny lubricant left on

(he bearings at. shutdown (ref. 12, p. 184); in

consequence, lubrication at slarting is almost non-

existent. This phenonmImn has caused a nun)-

1)er of bearing failures. It, was found (ref. 12)

that silver-plated cages are less subject to this

type of faihu'e. The use of ]ower volatility hl-

brieants, such as (he synthetics, has also improved

bearing lul)ricalion during engine starling where

operating and soak-back temperatures are not too

high; newer engines, however, have operaling

temperatures so high that the dry bearings may

still be a pro|)lem (ref. 5).

A numl)er of modifications to engine design

and operation might help to alleviale the soak-

bac]: prohh,m in future engines. Insul'ttion of

bearings to decrease the flow of heat to the bear-

ing from external sources shouhl lower the soak-

back temi)era(ure. Auxiliary cooling of the tur-
bine wheel or continued circulation of the

lul)ri(..mt, after shutdown shouhl also lower it.

The possibility of bearing fail,m: during dry

starts after soak-back ca): be decreased by im-

proving cage wear ehar'mterislics; this improve-

ment can lie obtained 1)y use of cage materials

which have inherent antiweld properties.

OIL INTERRUPTION

In several Korean actions, engines in battle-

dalnaged 'drphtnes el)crated long enough after

hfl)riea(ion failure (o save both the pilot and the

aivc.raft (ref. 1, appendix B). Other battle-

damaged airl)hmes were lost; there is a possi-

I)ility that some of these could have been saved

if the engines could have operated for 15 min-

ules wi(hont oil flow to the 1)e'trings. This pos-

sil)ility has 1)rompted (he 17.S. Air Force to con-

sider opera)ion wilhout oil flow as a "necessary

attril)ute for a fully acceptable turbojet engine"

(ref. 1, appendix B). Rolling-contact bearings

require very lillle lubricant for a(lequale lubri-

ealion; (his fact, may account for their good

performance under oil-interruption eondMons.

Oil-interruption tests (ref. 1, appendix B)

showed (ha( two engines operated longer than

15 minutes. Routine bearing requirements are,

however, 1)ecoming more severe. Future engines

of higher 1tower will lie less likely to survive

such an interruption without speci'tl I)reeau -

tions. One possible sohttion to this t)roblem is

use of an emergen('y lubrication system or an

aeeumnlat<)r th,tt could lubricate engine t)earings
to ensure their survival for sufficient time for the

pilot (o t'd:e emergency measures. For single-

engine "tireraf(, measures of this type are im-

perative.

In nmltiengine eomnmrci:tl aircraft, the dan-

ger of battle damage is not present, but a lu-

brication system may fail. For such installa-
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lions, 'm auxilial T lubri,:alion system might be

feasible, or an engine with lubrication faihu'e

couhl l_e shut down in flight.

COOLING OF BEARINGS AND LUBRICANTS

Engine temperatures higher than currellt ral-

lies will increase lleat flow to the engine bearings.

This higher heat flow will increase the cooling

load on befit the lubricant and the atmosphere

around the bearing. At supersonic speeds, ram

air or air bled from the compressor will not be

able to provide adequate cooling (ref. 1). 5u-

l)ersonic speeds also cause a rise in bulk fuel

temperature because of higher skin temperatures.
The fuel can then "fl)sorb less Ileal from the

lul)ri(':mt (in a lubricant-fuel heat exchanger)

before it begins to vaporize or decompose. Un-
less a bearing-lubricant combination capable of

operating at the high tenlperatures obtained in

SUl)ersonic tlight can be deveh)ped, lubricant re-

frigeration will be necessary. Many aircraft

enlploy refrigeration systems for cabin and equip-

ment cooling, but their enlargement_ to include

lubricant cot)ling wouhl result in additional

weight, oomI)lexity , and cost.

,IMPROVING RELIABILITY IN DESIGN AND

MANUFA CTURE

IMPROVED MATERIALS

For materials used in the races or the rolling

elemenfs, an iInprovenlent in the quality of tile

steel (such as by vacuum Dialling) can greatly

improve the load capacity or equivalently the

fatigale lifo of the bearing (refs. 8 and 9 and

Jig. 15). As indicated in reference 5, the mate-

rials for cages of bearings to be used in higher

tenlperature engines must be improved in

strength, oxidation resistance, and sliding-fric-

tirol compatibility with tile race material.

IMPROVED DESIGN

Improved cage desigus afford some opportu-

nity to improve turbojet-engine bearing per-

forinance. One goal of bearing-cage research

should be hydrodynamic lubrication between the

cage and its locating surface and between the

cage pockets and the rolling elements. Full

achievement of this goal is unlikely, but even a

partial achievement would result in an improved

bearing. Research showed that roller bearings

desig led to improve lubrication and cooling (by

provi :ling less resist ante to lain'leant flow through

the bearing) gave better 1)erf(wmance than con-

veldi,m'd be'trings (ref. 7). Schematic sectional

view: of two conventional and one experimental

rollel bearing illustrate I)atterns of lubricant flow

through the be'wings (tit. 16). Because of the

restri Men to oil flow into the bearing_ the con-

vanity,hal bearing with inner-race-riding cage is

poorly cooled and the cage-localing surfaces are

poorly lubric.ded. The conventional bearing with

outer race-riding cage restricts oil flow out of the

beat'i_,g; chui'nill_r of the trapped oil therefore

takes place and considerable heat is geImrated at

high speeds. This design, however, shows im-

prove 1 lubricatiol_ of the, ca_e-h)cating surfaces
because oil is forced to flow over the surfaces

requiring lubrication. The data therefore show

(tig. _6) little difference in operating tenlpera-

tare t ut some difference in lilniting speed. Linl-

iting speed is deilned as the maximum speed to

which the bearing can be operated wilh an equi-

librium iemperature.

'l'h_ experimental beal'ing had lilt le restriction

to tl(:w of oil tlli'ough tile bearing. It w'ts

e(luipl)ed with a straight-through outer race and

a nmltber of cut-outs on either side of tile cage

to pr,)vide free /low of oil out of tlle bearing.

Conventional

bearing

Failure_,

3o( - __ '}_.....

g U at "-
2 22(-

_18(-

g / Experimentalg 14C"

3 _'_ I 1 ] bearing
I0( 8,000 16,000 24,Q00 32,Q00

Speed, rpm

I_IGUR_ 16.--Dat.'_ showing lower lcmperatures and higher
failure speeds permissible with cxperimenlal bearing
desig md for inlproved cooling and lubrication. Bearing
desig _cd for easy flow of lubricant through be'tring "rod
for flrccd ttow of lubricant over cage locating surfaces
(data from ref. 7).
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Sonic oil is, however, still forced to flow over

the surfaces requiring lubrication (cage locating

surfaces). The results for this 1)earing (bottom

curve of fig. 16) show both an appreciable re-

duction in bearing operating temperature for any

one speed and an appreciable increase in limiting

speed.

Redesign can also help solve the fatigue prob-

lem in bearings. The bearings can be redesi_led

either to increase lo'td capacity of the single

bearinz (space permitting) or to decrease the

load per bearing by use of 't tandem arrange-

ment of nmltiple bearing's.

INSPECTIONAND QUALITYCONTROL

Inspection and quality control during bearing

manufacture are extremely important in bear-

ing performance. Present day aircrafb bearings

are manufactured to extremely small tolerances.

Further reduction in the tolerances of bearin_z

parts could be achieved only with dithculty and

at great expense. Present inspection and quality

control methods and difficulties of improving

them are discussed in the appendix.

The weakest link in bearing quality control

may be the race and rolling-element material.

Inclusions are usually detrimental to fatigue life,
but little is known about the effect <>f inclusion

characteristics (size, type, shape, distribution)

on f,di_'ue life under rolling-contact stresses.

]h, search programs are being set u 1) to ot)tain

lhe answers to t]mse queslio])s. Figure 17 il-

.... .,--i.
48b ! _--o_ .......

32, ! -

24! !
Percent of \ I

E sample failed _,
E 16 o 10 4 -o--_ - ---_

I [] 20 i4 ' o 60
Dispersion

i e'@ , ,o ,;0
Life, revolutions

FmURE 17.--Scatter in fatigue life of ball-bearing inner
races (6207 size at different stress levels)(dat'_ from
ref. 9).

lustrates the scatter in fatigue life of ball bear-

ing inner races (size 6207) at different stress

levels. Until a group of fali_ue failures with

less scatter is observed, the role of dimensional

tolerances in determining life scatter cannot be

accurately evaluated.

OVERHAUL AND MAINTENANCE METHODS FOR
IMPROVING RELIABILITY

BEARe,'G mSeECTION ANn REeL*CF_E_,'T

The frequency of bearing inspection would

depend on the ptlst history of the bearing in

lhat particular application and on the loss of

life or properly that a failure of the bearing

wouhl entail. Specitically, in a new engine type,

all bearings slmuld be inspected at short inter-

vals nnlil enough running time is accunmlated to

esl ablish a valid estimate of probable bearing life.

]),ring the development and early application

sl.tges of an engine, most bearing failures will be

caused by faults in the bearing environment.

These failm'es, however, should be fully correct-

able. It. is dm'b)Z the period of _mrmal use after

sutticient exl>erience has been accumulated to cor-

rect early faults that time-dependent bearing
failures such as wear and fatigue appear. Proper

engine m.tintenance shouhl include inspection of
the lubric'ttion system for wear debris and chips

and careful inspection of all bearings at over-
haul.

_Vhen '* bearin_ is removed for insl>ection , it

should 1)e visually checked for flaking, pitting,

scuff marks, roughness in the races, brinelling
of the balls or races, metal transfer to and from

the ca_ze, and excessive wear; the 1)earing sh<mld

then be rejected or passed (m lhe basis of estat)-

lished speciticalions on these items. After a

tlmrou_'h cleaning, a noise test shouhl be given

to the bearing.
In order to minimize fatigue failures in flight,

it is necessary to selw(lule replacement based ini-

tially on expected fatigue life and later on serv-

ice experience in the i)artcular application. At

practical load levels, bearings have a finite life;

also the scatter of data may be quite broad.

Complete avoid'race of fatigue failures by a re-

placement schedule may, therefore, be impossible.

Rather, the probability of fatigue faihlre in

specific application will be governed by the fre-

quency of replacelnent. I)ifferences in service
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histm T must be considered ill setting up the re-

i)lacement schedule. Reeords of bearing service

time must be kept to apply this schedule. 8ince

faligue is of importance mdy in the ball thrust

bearing, time records need be kept only for lhese

bearings.

It may be possible to reduce the incidence of

bearing failures due to excessive wear by bearin_

replaeen,ent bm-ed on measured clearances within

the bearing at insl)ection period_. Allowance
IIIllS[ l)e re'rile for the wear that will occur befm'e

lhe next scheduled inspectim b and bearings th'_t
do not have sufficient wear life left to run until

the next inspection period must be replaced.
There are three we'd(nesses which are l)rone to

arise in nlaintelmnee nlethods for bearings.

The first is a l)ossit)le lack of uniform training

am, rag people who are expected to ImSS .judg-

ment on a bearing. The same bearing might pass

inspection "It one station and be rejected at an-

other (ref. 17,). This clearly emphasizes the
need fro' better training. Training courses con-

dueled by (.Oml)etent instructors using reliable

manuals (m am it'riction bearing maintenttnce and

trouble deteeti(m such 'Is references 11 to 17

wouhl be v:duable. It must be borne in mind,

however, |hat the determinalion of the service-

ability of a bearing is a difficult task at best and

frequently a nearly impossible one. For this

reason, research is being conducted in an effort

to develop precise techniques for determining

bearing' serviceability criteria. Reference 18 is

a l_rogress report in this program.
A second common weakness in lnaintenanee

methods fro' be:trings is a l'tek of cleanliness in

lhe bearing inspection and "/ssembly areas. Bear-

in_s ark ,_ssembled and inspected at the manufne-

luring plant under ideally clean conditions to
ensure freedom front dirt and other eontamin'mts.

In order to perform satisfactorily, they must be

giwm the best possible care in han<lling and in-

slqllation throughout lheir lives.

TIME RECORDS

A third weakness in ttw m'fintenance meth-

otis for bearings is the ]'tck of eomprehensive

be'u'ing time and life records. Time records

w(mhl result in more adequate statistics and en-

able improvement in l_e:u'ing reliability by ensur-

ing against normal fatigue failures. In order to

ensure against normal fatigue failures, it is nee-

essary to kee l) running time records only for the

ball thrust bearing. Serviceable bearings re-

moved from discarded engines should be tagged

with their running time and placed in the parts

pool.

]_;earing distress may manifest itself in several

w:,ys. Any one or more of lhe following bearing

('haract-wistics mqy indiraie bearing trouble:
1) {nrre:tsed noise or vibration level

"2) ? Iigher operating temI)erature

3) _ncreased friction torque

4) Wear

In al engine installation, bearing noise and

friction torque c'mnot 1)e used because they ('ould

not be detected. Any increase in bearing noise
level w mhl be lost in the engine noise, and in-

('rease(l friction torque ('ouhl not be detected be-

cause it represents only a small fraction of total

engine )ower.

._t llUrllber of cheeks of engines alld l)earings

in aircraft might be of considerable help toward

improving reliability of both engines and bear-

ings. These include

(1) 'lemI)erature and teml)erature acceleralion.

Thermo,:ouples placed in be:lring housings and

read in the cockpit have been used extensively

with new engines in airerqft. After sutti(:ient

engine ,ime has been accumulated to remove

design f_ulls, however, it has been general l>rac-

rice to rrInove these thermocouples. Temperature

level m,'y not be sufficiently sensitiw_, however,

to indiec te bearing tronble. Preliminary research

has shown (ref. 1!0 that incipient bearing fail-

ures can be detected by measuring bearing tem-

perature acceleration. The resl)onse of tem-

perature acceleration to (.banging oper',ting

eonditio_ts is nmch more r'_pid than that of tem-

perature Figure 18 illustrates typical tempera-

and lem)erature-aceeleration patterns that oe(.ur

during ,,n increase in severity of operating c(m-

ditions. After an increase in severity of el)crat-

ing conditions, temperature aeeelerqtion is I)osi-

rive. I' an equilibrium condition is being

approacled, it be('omes negalive after a time

interval. During an incipient failure, however,

temperat u'e aeeelerqtion remains positive unless

the caus, of the imminent failure is removed.

Figure 1) shows 't temI)erature-'wceleration pat-

tern during "m incipient failure produ('ed by

shnltin_ _,ff the oil thin', llesloration of the oil
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FIGURE 18.--Temp(,rature and t('nq)('rature ttceeh,rtttion

patterns during increas(, in severity of operating con-

ditions on 75-millimeter-bore cylindrical rolh!r bearin_

(dat'_ from ref. 19).

flow l)revented 'l tot'd failure and e'msed the

temperature aceclerqtion to become negative.
(2) Vibration. The use of vibration level to

indic'_te bearing trouble might be feasible, al-

though increased vibration mit_ht indicate trou-

ble in any one of many components. An accel-

erometer and a vibration meter might be used
to measure vibration amplilude. It is standard

1)ractice to measure engine vil)ralion levels in

test stands, but measurement in flight wouhl in-

volve •t develolmlent program in each specitie

installation. Vil)ratim_ would wiry with tlight

conditions and 1)erhaps from airplane to air-

plane. In a multiengine "dl'pl'me, wing-mounted

engines would present additional problems.

(2) Wear. Excessive weal" might he detected

by regul'u' examination of the lubrication sys-
tem for foreign material or wear debris in til-

ters. An instrument to detect weal" in flight does
not appear worthwhile, because a wear check

can easily be made between flights.

()ne way of ot)t,dning 'l quantitative measure

of wear wouhl I,e to use a radioactive ('age ma-

%

-0

FIGURE

off on

10 20 50 40 50
Time, /,sec

19.--Temperature acceleration p:_tt(,rn during

incipient failure (data from ref. 19).
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terial. Such a scheme, however, might be unduly
complicated.

(4) Imbrication system. Ground clm('ks might
be made for wear debris as in item (3), and

devices for detection of blockages or ]e,tl{s in the

system should be stmlie(l. Flowmeters and i)res-
sure _.,_,m,,es,,or simple warning lights, to indicate

loss of oil i)ressure or flow might be installed in

the cocki)it.

ADDITIONAL INFORMATION NEEDED FOR IM-
PROVEMENT OF OPERATIONAL RELIABILITY

Studies to obtain infornmtion on improved

be'u'ing materials, hearing designs, and lubri-

canls are needed, but this rel)ort discusses only

information required to improve reliability in
lhe sense of avoiding serious bearing failures.

Bearing reliability could be improved if ad-
dll ional information couhl be obtaine(l on the

followintz factors :

(1) Methods of indicating incipient hearing
failure during oi)eralion

(2) Methods of detecting ltlbric,ltion system
malfunction dm'ing ol)eration

(2) Time lapse between incipient and total

failure, for the various failure lypes

(4) Relation between material properties and
fatigue life

(5) Mechanism of failure during oil inter-
ruption

(6) Methods of extending bearing time to

failure, following oil interruption

CONCLUDING REMARKS

])at', on bearing failm'e and life (from service

experience of turbojet engines) are insufficient

to draw gener'll conclusions concerning bearing
reliability.

Table IV shows a compilation of some bear-

int_ failure types and some of the possible cor-

rective meqsures. Fatigue life, whM1 is of pri-

mary importance to the ball thrust bearings, can

1)c increased by reducing load; hearing tesls have

esl'0)lished that life is inversely prol)ortional to

the cube of load. At pr'lctical load levels, bear-

ings have a finite life; also the scatter of dat:t

may be quite bro:ul. Conlplete avoidance of fa-

tigue failures by a replacement schedule may,
therefore, be impossible. However. tile prob-

ability of fatigue failure can be kept low by a
replacement schedule that is based on service
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TABLE IV.--BEAI/ING-FAII, UIII'; TYPFS A2;I) (:OllliE(71"IVE MEASUt{ES

Fitilllre i_q[llso

Fatigue (lhrust bearing, t)rimarily)

Wear

Extreme boun(tary htbrieation

Corrective llleilNIIl'(!s

1

(a) l_ow fatigue life can he il_cr(!ase:l I)y reducing load. l,ife o_ h}a(_a •

(b) There ,',hould be scheduh.d rel)lac_'nwtlls tmsed on exi)eri(!tJ(:e.

(a) Excessive wear fair. indicnl(,s need for red(siian.

i (b) There shouhl be schedule:t inspections and replaeenlent at :t Sl)eeiiie:t
I WI!_LP.

!

( 0 \\'hen ex('essiv(¢ mei:tl 1 ;'ansfer occurs al. sliding sul'faees, m:tteri'd change
and re:t(,sigll are indi :alod.

experience and that takes into account differences

in service histm'y. An excessive wear rate indi-

cates a need for redesign. Under conditions of

normal wear, bearing reI)lacement can be based
on measured clearances within the bearing at

inspection periods. Bearings that do not have
sufficient wear life left to run until the next

inspection period nmst be replaced. For extreme

boundary-lubrication failures, indicated hy ex-
cessive metal transfer at the sliding surfaces,

material change and bearing redesign are in-
dicated.

Bearing performance and relial)ilily can be

improved I)v

(1) Additional information
(2) Better failure detection methods

(3) Belter maintenance practice

Stmlies designed to eliminate bearing failures
would be benefited if more coml)lete and accu-

rate information on the causes, modes_ and fre-

quem:ies of bearing failures were compiled at
the maintenance and overhaul bases. For this

1)uri()se, the insi)ectors nmst be trained with

rega "d to the informalion needed.
Tl_e number of catastrophic bearing failures

coul,[ probably be reduced if better methods of

bearing- and luhricali,m-system failure detec-

tion were developed.

APPENDIX

INSPECTION AND QUALI'?Y CONTROL

The number of bearings in the lot being in-

spected determines whether 100 percent or a sta-

tistical sample is inspected. Statistic'd inspec-

tion methods are never employed with lots

smaller than 300 and usually not with lots

smaller than 500. At present, practically all

rotor bearings for turbine engines are made in

quantities under 300 so each t)earing is inspected.

This means that very precise dimensional meas-

urements together with magnatlux and etch in-

spection of races and balls (used to detect surface
flaws, cracks, and material defects) are made.

Many types of special gages are used in the

l)roduction line and final inspection of pi_eision

bearings.

Ball sI)herieity is checked and balls are size

matched for specific bearings. A vibration me-
ter is used to cheek the smoothness and vibration

level of an assembled bearing.

A t turbine engine rotor bearings are given a

ver) thorough visual inspection, and definite lim-

its r.__garding pits, dents, and scratches have been
estaldished. Races not acceptable in the visual

inspmtion "tre reground and reinspected. Final

inspection of bearings is done in areas where

teml}erature, humidity, and dust content are

clos,.ly controlled. Most of the gages used in the

tinal inspection of bearings require precise tem-

pen_ture control and skilled operators to give

mea fingful results.

Tle improvements in bearing perform'owe that
result from sm:dler tolerances nmst be evaluated

exp_ rimentally and must be weighed against the
inermsed cost of manufacture. Even for per-

feet alinelnent, stress differences will exist in the
various balls because of the size differences.

Closer matching of balls would probably im-

pro,'e bearing fatigue life. This closer match-
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ing would, however, accentuate the problem of

reproducibility of measul'enmnt; when measure-
rnents to "t few millionths of an inch are at-

tempted on a set of balls, it is often found that

these measurements cannot be reproduced at a
later date.
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CHAPTER X

ENGINE FUEL CONTROLS

By Jo_tN C. SANDERSand IIAR_L[)GOLD

SUMMARY

The rcl/ab/l/:!/of .f_,!co_tro/,_(,n t,rbojct e+_-

:/:i_es:s r,rk'wcd o,n the ba._/,_"o/ aca:b_blc fail-

ure sta::s::c._'.1-+_(/eneral_these ,_.tat:_tlcsindg-

rate that /ucl-cmtt,'ol _y_tcm._" that im'o.rporate

_na._y/'_o_ct:(_llsare too.re._.uh)ectto failure than

those :nco.rpo.rati._gfewer fu/ictim_s.
Air f'orcc a+'cidc._trecords :.mlicatethat o._w-

th:/'do/the fliqhtace/de,isoccurrh_:/with turbo-

jet alr,raft a,',+eau.w'dby /uc/-em_tro_vwl/u._ie-

tion. An ecahmtio,n of the perfo.rma._we of

,'urn'eat.f,cl cmdrols fro.m Air Fo.rcc reco.rds

ilulicat<sfurther tha.t+_ear/!/threc-fo,urlhso.fthe

fael-eo._trol +_mlfulwtio.7._ are attributable to me-

ehanb_al failure o/ eo-ldrol aml fuel-,s'y,_tem, co ¢_-

po-ne_t,_ and that o_w-./o,.rth are due to htade-

quae 9 o/ the cm_t?o/ m_thod. 7'herefo.l% the

po,_.sibi/:ty r,c:st._ that a c.ry s:g_Nfieant ilI1pI"OrCe -

7/_ent in turbojet-aircraft .rdlability co,rid be

achleced by im.proee_w_its in the details of me-

ekatiiea_, design of eo._drol a_d fuel ,ystem

7'hc C#'cct. o/f_.,l-cmttrol +?.dfunetio,ns on e,n-

91he perfo-_w_a_w( arc c,,'nm;_ed, a.mt the factors

that lead to eoqdrol eomplex:t 9 are evaluated.

The ccah¢atio,n i,ndicates that fad-control eo.m-

l&'a'it9rcstdts from compk_x rcqu:remc_Its im-

posed by the dom:,_a_/ rc,t.ireme_t of opcra-

tkmal rcl&bility of th_ t.rbojet aircraft.

INTRODUCTION

The fuel control on the turbojet engine, 'is

considered in this pal)er , l)erforms all the func-

tions of autoutatic regttlation of the engine vari-

ables such as speed, teml)erattu'e ,, acceleration,

Subsequent to the period in 1953 covered by the statistics

and subsequent to the origina, writing" of this report, consid-

erable lmprovcn_ent has been made in mechanical reliability of

control components. The basic difficulties in temperature and

ac(,eteratlon control remain,

17S

and thrust by means of the control wn'iable, fuel

tlow. ]n addition, fuel-injection equilmlent will

be con._idered to be a component of engine fuel
COlltrol_.

F'lih!re reports conq)iled by the Air Force

over tl_e l>ast several years S]lOW that compo-

uem flilure in control and fl,el-sysiem equip-

ulent u_ed on jet-propelled aircraft occurs with

serious frequency. Air Force records indicate
llult fu,d-cmltrol mMfunctions cause one-third of

engine failures that lead to tlight accidents. This

rei>resenls lhe htrgest category in the Air Force

compil:_tion.

The Air Force records of control-system fail-

tire sllow that simple controls 'ire more reliable

than C.)lnl)h_x ones. The problem of turbojet-

engine c<)ntrol reliabilily cannot, however, be

solved dlnply through rcduciiou in control con>

plexity Contr<)l coml)lexily results from com-

l)h,x-co tirol requireluents in,posed by the donli-

nant r,quirement of ol)eration:d reliability of

the turbojet aircraft.

The _t)ject of this study is to examine the ef-
feci of control- and fuel-syste,n-component re-

liabilit, on the overall reliability of ti,e turbojet

engine and to evahtate the factors tliat lead to

control complexity. First, a review will t)e made
of fail ire stat islics. Then an investigation of

llle lUO les of failure possible by inadequate con-

t1'ol will be presented. Wilh this information,
ci'iticis,t will 1)e n,ade of several nlethods of

control- an<l fuel-system-c()n,t)onent configm'a-
lions.

STATISTICS ON CONTROL FAILURE

])uri _g the past decade of use of the turbojet

engine in aircraft, considerable experience has
been ol,tained with various types and methods of
control The U.S. Air Force has collected Un-

satisfactory lleI)orls of control anti engine fail-
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TABLE I.--DISTIHBUTION OF ENGINI,; AND C()NTIIOL MAI,FUNCTIONS ATTI{IBUTED TO CONTROl,.

COMI)ONENT FAILUIIE OBTAINI']I) FI/()M 17NSATISFACT()IUY I_EPOIUI'S

Nalure of conirol (lit[icul(y

reporlcd

l"lamcout ...............

( )verst)eed ..................

(_()l|l|)ressor surge .....
()vei'lelnper:H Ilre ...........
gos,'-i ()f (_()lll roI .............

Inability to obtain rated sl)('e'l _

Fuel-systent oscillation .........

T()l:d ...........

Total

|*(_|)OFI S 1

])(_F(!OI l (

5.4
5.7
6. 9
7.0

13.4
29.6
32.0

lOI). 0

ures (luriilg this period. (For a description ()f

the 17nsatisfaclory ]{eporls, see oh. II.)

The distribution of e]lgine :/ml control ]nal-

functions attril)ule(l io c()nlrol-conq)onent fail-

tire ('IS obtained fl'i)lll lhe Unsatisfactory Re-

ports) is given in (lille I. The l)er('entages Kiven

in lhe table are based ()it the total ]nnii|ler ()f

rel)ol'ts Oll i]lree (liffere]it engh/es. The tttbill:i-

tion represents it tollll of 1420 reports converhlg

an operating" lilne of 87,7(;5 ]lour_. The Imsie

characleristics Ill the o()ntrol sysienis eniphiyed

on tim ell_illOS aye Kiven in table II.

]_]ngilleS 1{ tl]li[ L', ilicorporate illO]'O ('(llltl'()]

flilietiolls than eliTiiie A. Engines ]{ Ini(l (} nl:ly

be considered to l)e (if ;ipproxini'ite]y equal cOlil-

plexity 'tn(l (if oTe:iler c(liuplexiiy than ellKille _tl_.

The :frequency of Unsatisfactory ]{eports ap-

pears it) lle considerably lower for lhe sinlplest

engine all(t control system (enghm A) than for

the Inore COmlilex engines (engines ] _, and C).

_ngines ]:i ,uld C appear to s]iow aboul the same

reeorils of reliability in spite of considerable dif-

ferences in tile design of eoiliro| i/n(l fu01-systenl

eonipoBelitS.

ANALYSIS

The records (its c()ntained ill tim I,nsiltisfac -

tory I_ot)orts ) eli lhe yeas(ms fin' tile control dif-

ticulties 'u'e ill(:Olllpiele ill Ill(iSl (.list,s. Tile slate-

lnents in tile rep()rts life often Va_lle llili1 fife

t]leref()re slibjeci 1o several possilde, inler|)rela-

lions. Nevertheless, there iS sntiicient inf()rlna-

lion (ill lhe I)ossilde illO(|es (if i/orion of ])oth

ellgilleS l/lid control sv,,-i|elllS it) nlllke a rlltional

interllrelllti()n ill lleilr]V all cases. ()It lifts basis,
tin alteml)t will be made to analyze the statistics

ill table i Io in(licate the probable causes for

faihu'e.

Fuel-system oscillation and loss of contr01,--Me-

ehanieal faihu'e of fuel-systein eoinponents rep-

resents the greatest sent'co of 0entre] lnalfunc-

l ioIIS in ClllTellt Air ]gOl'ee turbojet en_'ilieS. [Tl]-

satisfactory lleports list control breakdowns due

to such causes as rupture of material and faulty

assembly. Parts that have failed because o£ rup-

titre of ln'ltei'ial include (ti'lphragnls (fabric),

bellows (melal), governor silafts_ and pumI)

drives. I)i,/phragms failed many more times

than did pump drives. The failure (if a dia-

"I'ABI,E II. -BASH? ('IIAllACTEIHSTI(:S t)l," TIIlll.]E (:ONTI/()L SYSTI_:MS C()VEIII.]D IN UNSATISFA('T()IIY

R E l)Oll TS

t+:n_ine

A

B
i

(;

( }onl tel conll)lll er

llydr:lulio "tn(l nl0ohanic:il

l[ydraulic :l_nd mechtuiio'tl

Coml)Uter ()verspeed Surge,
fluid proteclion prolection

Oil Yes No

Ilydrmllie ,ind niech:ulica[

]{lowoul

proleetion

N o

I lel es Yes Yes

(ill ! Yes Yes Yes
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])hrao'm on one engine control svsteln aeeollnted

for nearly all the cases of "Loss of con! r(fi" listed
in table I.

A gre',t many faults are associated with tlow-
control and shutoff v'0ves. Valves in flow di-

viders for duplex fuel nozzles have been found

to stick, causing both lo_ of power and over-

temperature in starting. Pressure-regulating
valves have 1)een found to oscillate. Fuel-._vs-

tern oseillati(m represents the most frequently

reported malfuneli()n (table I). It is even likely
that s.me of the rel)orts .f surge were actually

ca_es ()f fuel-system oscillation. Fuel-system os-

('illat ion is attributable to loss of frictional damp-

ing as regul.ltor valw, elements wear. This type

,ff valve instability nlay not appear in ewn'y
c_mtrol model 'rod thereby nmy escape detection

in the deveh)t)ment of the control system.

0verspeed and inability to obtain rated speed.--

Cm'rent speed controls are cap'fl)le of regulating

engine speed to well within 1 percent at rated

speed. Thus. in the ease of the properly func-

tioning speed ('ontrols, there is little loss of .iv,ill-
able thrust or reduction in turbine life due to

e(mtrol error. A._ shown in tal)le I, overspeed

was reported in 5.7 percent of the Unsatisfac-

tory Reports. These reports give overspeeds

ranging from 103 to 111 percent of rated speed.

This nmgnitmle of overspeed does not lead to

immediate destruction but may simultaneously
cause a severe overtemperature, the total result
of which materially shortens turbine blade life.
The records examined showed no indication of

immediate destructive overspeed. IIowever, this

difficulty can lead to immediate destruction of the

aircraft; and, hence, the records may be in-
complete.

The largest number of speed-control difficul-

ties is associated with the inability to obtain

rated speed. As shown in table I, this mal-

function was reported in 29.6 percent of the Un-

satisfactory Ileports. Speed-governor malfunc-

tions are usually 'lssociated with loss of "uljust-

ment or frictional effects. It is therefore likely

that. on the average, governor malfunctions will

result in as re'my underspeeds as overspeeds.

Thus, probably ;3.7 percent of the total reported

malfunctions were underspeeds due to governor

failure, and 03.9 percent were cases of inability

to obtain r',te(1 speed because of engine deterior't-

lion or other control-component failure. On this

basis, 11.4 percent of the malfunctions are at-

tril)utal,le to speed-control faihH'e. 'l'he._e fail-
ures *m attributable to mechanical defects rather

than ina(teqmu.y of the control method.

The frequency of eases of engine deterioration

or of eontrol-eolnl)onent failure (olher than

speed c_)ntrol) c:msing inability to atlain rated

speed appears to be related to the eonq)lexity of
the engine and control system. Table 1I[ shows

t he dist,.'ibuti(m of speed-control malfunct ions for

the thr,_e engines included in the Unsatisfactory

Reports. In the c'lse of the stint)lest engine (en-

gine All , the reports are nearly equally divided

betweeI: overspeeds and low-speed limiting. In

the e',se of the lnore complex engines (engines B

and C), the low-speed limiting very definitely
t)redonfinates.

TAIH_E ]II. -DISTIllBUTI(_N OF SI'I,]ED-

CONTII()L MALt_ UN(VI'IONS

Speed-cont rol

malfunctions

• relal ed to
()v(_rsl)Ped _

A 45
B 30
C 20

_[)(_e(l-colll ro[

lllnlftln('tiollS

relal _d to

low-spe(_d
limilinK,
tmreent

55
7O
S0

Ovem mperature.--Overtemperature w_s re-

ported n 7.0 percent of the Unsatisfactory Re-

ports ilvolving control difficulties (table I).

Many o f the overtemperatures are connected with

overspe_ds. The overtemperatures reported in-

dicate tailpipe temperatures between 1800 ° and
1900 ° I_.

Current-production temperature_ controls do

not utilize direct temi)erature sensing. An at-

tempt i,, nm(le in these systems to kee I) the tem-

peratur4 within safe limits by speed 'rod accelera-

tion co_ttrol. This control of temperature by

seconda:'y variables does not adequately protect

the engine over all its operating conditions. For

exampk, it does not give adequate protection

during _tarting. This lack of temI)erature con-

trol during starting is believed to cause much

more engine damage from overtemt)erature than

is indie:_ted from the Vnsatisfaetory Reports.
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Reportsobtainedby l.ewis laboratory personnel

<luring visits to Air Force overhaul depots in-

dicale 1hat a very large l)er(,cnta_2e <)1" engine_

(possibly greater ihan 50 percent) is subject to

severe overteml)eratures between overhaul pe-
riods. The overhaul depots have on hand an

exlremely large nmnt)er of turbine blades which

have been discarded because of overtemperature.

These discards are suspected Io have suffered the

overtemperature (lama_re chietly during starling.

This overtemperature damage can be attributed

io the inadequacy of _l_e temi)erature-control
methods now in use.

Surge control.--According to the Unsatisfactory
• ( •Lep )rts, compressor surge occurred in (;.9 t)er -

cent of the total nl'flfunctions (table I). A l'u'ge

number of these cases probably resulted from

drift or improper adjustment of lhe schedule-
type controls in current use. Drift or loss of

adjustment is c'_used by mechanical fMhu'e and

may I)e eliminated with refinement in design_;

however, environmental changes can cause a de-

viation of the engine surge characteristics from

a fixed-design schedule. It can therefore be as-

sumed that the surge-control malfunctions re-
sulted both from mechanical breakdown and

from inadequacy of current control methods to

correct for all environmental changes.

h_ addition _o the reports of surge in the Un-

satisfactory Reports, there are a significant num-
ber of cases in Air Force accident records in

which compressor stall is thought to have caused

flight acicdents during landing. It is likely that

these eases of surge resulted from the lowering

of the surge limits (below the normal schedule)
due to the successive accelerations that often oc-

cur in landing. It is not feasible to lower the
acceleration schedule to avoid this condition of

surge, entirely because of the severe pen'dty that
would be imposed on engine acceleration. New

methods of surge prevention or incipient-surge

detection will have to be developed before the

hazards from surge can be completely elimi-
nated.

:Flameout.--Flameout from 'tll causes is reported

in 5.4 percent of the Unsatisfactory Reports

relating to control difficulties (table I). The

reported flameouts are associated with (1) drift

of the flameout controls, (2) deterioration of

the engine or of the fuel system, and (3) the

inadequacy of the control to handle the specific

operating conditions encountered. Flameouts

have occurred more frequently at low and me-

dium al(itudes than at high altitudes. This in-

dicates that dcterioration of the engine or fuel

system or flameout-control in'ulequacy caused
more fl'mmouts lhan did tl,mwout-control drift

(mechanical failure).

Flameout, caused by fuel-control nmlfuncti(>n
is listed in Air Force 'lcci<lent records as the

cause of a significant number of flight accidents.
Because these flameouts occurred at low altitudes,

it is likely that many of the reported flameouts

occurred during acceleration or deceleration.

This tyi>e of f'dlure is attributalde to inadequacy

of the method of flameout prevention that is

current ly employed.

CONCLUSIONS

()_ the t):_sis of _be analysis of the faihn'e sta-

tistics, it is apparent that mechanical breakd,)wn

is the major cause of engine fuel-control nml-
function. It has been indicated that through

mechanical failure the various control compo-
nents contril)uted to fuel-control failure as fol-

lows: speed control, 11.4 percent; regulating

valves in the fuel system, 32 percent; ruptured

diaphragms, 13.4 percent; and sm'ge control, 3.4

percent. Of the malfunctions resulting in in-

ability to attain rated speed that were attrib-

uted to engine or control deterioration, it is likely
that. about one-half were eases of unidentified

mechanical f'tilures in the engine fuel control.
Thus, unidentitied mechanical failures can be

considered to contribute 12 percent of the con-

trol malfunctions. The total percentage of mal-

functions of engine fuel controls attrilmtable to
mechanical breakdown is then 74.1 percent. The

remaining 025.9 percent of fuel-control malfunc-

tions is attributable to inadequacy of the control

methods currently in use.

Currently, control designs are changing rap-

idly, and a given design is not retained for suf-

ficient time for complete elimination of me-
chanic'd defects. When control designs are sta-

bilize(l, it can be expected that mechanical <lifll-

culties will eventually be eliminated by im-

provement in details of the equipment.

A large number of controls of various designs

are now under development. The Lewis labo-
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rat.ry ha: m)t made a design analysis of these

controls and hem'e does not atieml)t in lhis I m-
E irtr 1_pe,' to ..u,.,.e.t improvelnenls to the mechanism

of any specified ('(mtrol. Instead, an alteml)t is

made to pr.vi_le an insight into the ways an

engine can fail through inadequate control and

the 1)r()ldem_ a_soeiated with l)r()vi(ting "Mequate

,'mflrol over ihe wide range of flight ,,)mliti.n_

lhe engine is expected to encounter.

MODES OF ENGINE FAILURE

Engine damao'e due lo iml)rol)er or inadequate
control can result from tile following:

(1) Overspeed

(2) ()vertemperalure of engine paris

(3) Vil)r'Hm'y stress "rod overtemperature pro-

dll('e(1 IIV ('OlllI)l'essoF S[_lll Ol' Slll'Te

(1) Flame, mr

(5) Thermal sho(.lz and overteml)eraiure dur-

ing" startin_ ,u' quick lhrusl (.hange

OVERSPEED

lligh oversln,ed can (muse immediale rul)tm'e

<)f rolatinK parts, sueh "is ('Ollll)ressol' alld turbine

disks. The e<mservaiion of tile desig'n and rite

a_re of lhe rotaling p'lrts both intluence tlm mar-

g'in ()f (wet'speed before su('h ('atastrol)hic fail-
lll't_ ()4"t'IIFS.

()vel'speed_ less than lhose needed to cause in-

stant failure produce a dama,,2'e lhat qccumulales

with time. Stress-rupture and assoeialed creep

are su('h causes of this deterioration, 1)arlieu -

]arly in the lurbine Ma(les. 'File effect of speed

(and stress) on the stress-T'uptm'e life of a rep-
resent:litre turbine 1)lade material is shown in

fi,,mn'e 1. The abscissa is lhe square root of ma-

terial stress and hence is proportional to engine
speed. For the stress-rupture-life characteristics

shown in figure 1, an increase in sl)eed (and

hence stress) of 10 percent above an abscissa value

of 150 will decrease the stress-rupture life from

1000 to ,350 hours at 1433 ° F. This rei)resents a

decrease in stress-rupture life to one-third of tlm

life at rated speed.

Frequently the overspeed is accompanied by

overteml)erature , 1)artieularly in engines with a

fixed nozzle area. For a representative ease a

10-percent overspeed is accompanied by a 200 ° F

overtemperature and _ stress-rupture life of less

than 1 hour, or 1/1000 the life at rated speed.

1800,

7

1700!

L t
,s0o! !

E

1400i

,soot ; ] t i ,
120QL l i i ! i L

r40 80 120 160 200 240 280 320
.,/St'S]Te_-,constanl x engine speed, Ib/sq m.

Fi(;vRt: ].----Stress-rtlptul'e characteristics of relm'senta-
tire turbine blade alloy.

An .werspeed control is subject to error in the
direet!(m below the desired limit as well as above

the limit. _Vllen the eomrol limits engine speed

l_e]ow t]le design maximum, the effect is a re-

(hmtiol in engine power. In the ease of engines

with txed exhaust nozzles, l lLrusl falls off al)out

4 l)ere mt for a 1-percent reduction in sl)eed from

rated q)eed. This hig'h rate of thrust loss im-

poses :t stringent requirement of a high degree of

,u:euraey ,rod reliabililv on speed limiting m"

re_ul'v in_ ('.hi vols.

OVERTEMPERATURE

At ld_h lemperature lhe lift; of lurbine 1)lade

materials changes drastieally with changes in

ol)erat ng tem!>eratnre. Consequently, it may 1)e

exl)eel _d lhato tile life of the turbine blades will

be sendtive to the aceura(.y of the tenq)erature

eOlltI'O syslem. Figure 1 shows tile slress-rui>-

lure c mr.u:leristies of a representative turbine

blade alloy as "t function of engine sl)eed and

malerid temperature. At. a stress of 22,50t)

poull(l: per square inch (square root of sl,'ess =

150) atd a metal temperature of 1500 ° F it nlay

be sere that an increase in lemperature of 1()0 <_
F red, lees the life froln 200 to 10 hours, or 1o

1,_0 of the life at. the lower temperature.
In t m ease of the tixed-exhaust-nozzle turbo-

jet en_.ine the equilibrium gas temperatures are

essenti dly functions of engine speed up to a crit-

ical altitude. Above the critical altitude the equi-
libriun, turbine-disehar_ze temperature at rated

speed 1,eeomes considerably higher than at lower

altitud'_s. This variation is shown in figure 2.

From the data it may be seen that, the critical
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FmuRn 2.--Effect of altitude on turbine gas temperature.

altitude is "q)proximaMy 40,0110 feet. For 'tit-

craft flying below 40,i)00 feet. it has therefore

been practical lo e(msi(ler the overspeed limit as

an 'tde(tuate overtemi)erature limit for e(luilib-

rium running of the engine. IIowever, dm'ing

starting and during acceleration of the engine,

gas material lemper'mlres rise markedly above

equilibrimn values. ]lenee direct overtempera-
lure 1)roteelion is desirable even for low-altitude
qircraft.

The temperahlre-control problem is simi]ar to

the speed-control problem in that snmll devia-

tions ill the controlled varial)le (leml)eralure)
result in large variations in thrust. The relalion

of thrust to measured exhaust-g,ls temperature

is shown in figure 3. It. may be seen that ap-

proximately an 8-percent loss in thrust results

"'[ [ T _ _f r Er_glne i i ! i i t

_ .8

i

i iT
i

4 t . x

i i_ [..... i.
-600 -500 -400 -50( -200 -I00 0 tO0

Turbine-drscharge temperature minus

roted turbine-d_scharge temperature, °F

FIGURE 3.--Thrust sensitivity to turbine-discharge tem-

perature at rated speed.
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from a 100 ° F reduction in temperature. Be-

cause of this high-thrust sensitivity; it is neces-

sary t(> ol)erate engines near the maximum ,al-

lowable turl)ine blade ienq)erature in order not

to s'teritiee a l,u'_re measure of the potentia] thrust
of lhe engine. The dilemma involved herein is

(lenlonslraled in figure 1, where it may 1)e seen
that, a variation of 100 ° F could result in a °0:1
variation in material life.

There are two basic difficulties in obtaining suf-
tlcienily accurate temperature measuremems. The

tlrst of these diltieulties is simply lhat of ol)tain-
in_ 't measurin_ sensor llmt will have the neces-

sary life, sensitivily, and accllrac), at tempera-

tures 'fl)ove 1500 ° F. While a truly satisfactory

sens<)r d<)es not yet exist, it it reasonalde Io ex-

1)ect that one m'ly be developed hi time. The

second difllculty in el)lathing the _eml)erature

me'tsul'ement, results from the irregular ga_ lem-

perature profiles that exist from the burners to

the exhaust nozzles. Figure 4 shows that the

r'ulial lemperaiure dislril)ution in the turbine

annulus may not only l)e irreTular lint may vary
appre('ial)ly with altilude. Because of the ir-

r%rular profiles, the material temperature may

difl'er widely from the gas temperatm'e measure-

ment 'it 'l given point in lhe en_rine. Therefore,
a sensor located at one radial station cannot 1)e

relied upon for aceurale control of lurl)ine buel<et

lemperature. _,Vlmre lemi)eralure ('onlrol is em-

|)]oye(l in era'rent, practice, single-point sensors
at several stations 'u'mmd the lurl)ine 'umulus

are generally used. This praelice is inadequate,

trot it is a compromise with the inadequacy of

available temperature sensors. Chief reliance for

overtemperature protection is s|ill placed on in-
direct means of control, such as speed and ac-

eeleralion control. Improvements in engine de-

sign nmy result in more uniform leml>erature

distributions in fulm'e en_,ines. This will greatly

ease ihe lemper'/ture-control problem and will 1)e

a ma.ior step toward grealer engine reliability.

l)urin F slarting, excessive temperature resulls

from the delayed i_nili<>n of liquid fuel that has

collected in lhe burners (turin_r the initial phase

of the starting process (ref. 1). This collection

of liquid fuel can readily ()('cur+ because the fuel-

flow rate required to el)lain ignition is large

compared with the flow rate required to accel-

erate the engine fronl crankinT, speed. It is
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Station
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FIc, UltE -t.--Elt','ct of :dt itude on tenll)m'atur(' distrihution

at tttrbine disetmrge.

therefore necessary to avoid both ignition delay

and delay in reducing fuel flow after ignition

has occurred. In nmnual starting, the skill of

lhe operator in evaluating the ignition delay and

in manil)ulating the throttle after ignition has

occurred is ave W important factor in the avoid-

attce of overtemperature during starting. Fig-
ure 5 shows the variation of blade temperature

during two engine starts (ref. o). Figure 5(a)

shows a start during which proper manipulation

of the throttle has kept nmterial temperature
within safe limits. Figure 5(b) demonstrates

the manner in which incorrect throttle manipu-

lation results in dangerously high engine tem-

perature.

The two causes of overtemperature during

starting are related to inadequate fuel atomiza-

tion at low flow rates. Engine tests have shown

that _cith a finely atomized fuel spray, engine

starti}tg at a fixed fuel-flow rate is possible.

Startiug at a tixed flow rate elinfinates the dan-

gets t mt result front throttle manipulation..tcsL
have tlso shown thal, with proper atomization

overtcmperalure during starting does not occur

in spte of unlimited ignition delay (ref. 3).t

Engine damage incurred during starting ]nay be

i largely eliminated as improvements in fuel-atomi-

I zation components are made.
During engine acceleration the rise in turbine-

inlet _emperature above equilibrium running val-

ues i_ necessary to establish the accelerating

torqu, within the engine. IIowever, the turbine-

inlet temperatures that are required to induce

rapid acceleration of the engine are not generally
above the equilibrium vahte at rated speed.

Therefore, engine damage from overleml)erature

during acceleration from normal operating speeds

does not represent a significant factor affecting

engine, life. The principal source of damage
associated with the temperature rise during ae-
celerntion is the creation of thermal stresses in

the t_trbine. These stresses result from the sud-

den ,.hange in gas temperature and therefore

occur even when the gas temperature does not

rise ;bove operational limits. Thermal stresses

can te reduced by retarding the rale of gas tem-

perature change. This could be accomplished by

autor retie control but only at the expense of the

Mere _se(t operational hazard due to the slow re-

Sl)Ome of thrust to throttle command. A more

desirtble solution to the thernml-shoek problem

lies in iml)rovements in material and design of
turbi te lmekets.

Overlemperature is also encotmtered at maxi-

mum speed when the temperature control does

not l,ossess sufficient speed of response to adjust

quid. ly to a disturbance. Such a ease is illus-

trate t in figure 6, which shows a lime history of

turbine-discharge gas teml)erature following aft-

erbu:'ner ignition. In this instance the engine

was equipped with a variable exhaust nozzle.

Tern )erature control was obtained by atttomatie

varktion of the exhaust nozzle. It may be seen

that an overtemperature of approximately 900 °

F e,,isted for about 9 seconds following after-

burner ignition and lhat this period corresponds

to the time required for the nozzle area to change.
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More rapid actuation of the nozzle area can re-

duce such temperature deviations to negligible
values.

COMPRESSOR STALL AND SURGE

At the present state of development of axial-

flow compressors, it is a practical necessity, in

the case of engines utilizing such compressors, to

incorporate elemeuts in the control system to

prevent operation that will lead to stall. Com-

pressor stall occurs when the pressure rise through

the compressor exceeds _ critical value at a given

engine speed. Figure 7 shows the characteristic

variation of pressure ratio with airflow at vari-

ous rotational speeds in axial-ttow compressors.

The surge line represents the highest attainable

pressure ratio at a given speed or airflow. Also
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Temperature controlled by v'lriation of discharge

Sul)erinip()sed on the nuip are a typical engine

e(luilil)riuni operatin 7 line and lines (if constant

enghle [low. Ii ni:ly t)t- seen that the equilibrium

lhle rollTllly pilrallels tile SIlI'_e line up to rated

speed illl(l lliat the lhics collVel'_t' ill lhe over-

speed region. The al't, li between tile equilillriuni

lille illl(l lhe sllr_e line is the engine acceleration

region. Vt'hen acceler'llion is altenipted, the in-

('rt':lSed tenilieralul'e above steady state initially

f()r('es lhe coml)l'essor prl!sSlll'e upward along a

constant-speed line, nioving lhe operating point

in the nlap above tile steady-state operating line

alld towarlt stall or surge. Some eilgiiies show a

severe deviation froni lhe parallel relation of the

surge and operating lines at speeds below maxi-

mum. In this case, critical points of operation

exist where the margin between the lines is small.

Corrected fuel

, flo_, _ I#_'I

_oo
r , i " _60,_ Stall and su ge ,_,_ "_ - 4

above this line..,__'_ _t i

,,+//X -4< '°

t ?peratlng line- /V/,/_(, percent r_ted

30 i00

-:drT,
Corrected airflow, PII

Fw, une 7.--Typical characteristics of axial-flow com-

presser. N, engine speed; Pi, inlet l)rc._surc; Ti, inlet

tom )erature; We, airflow; ws, fuel flow.
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Acceleration

FIGURE 8.--llecord of stall and sllrge during acceleraliOli.

A record of a rapid acceleraiion in which stall

WllS ellCOlllllet'ed is sliOWll in ti_lll'e ,q. The ac-

celeration was imhl<:od 1Lv sleadily el)oiling the

fuel valve, thus illt!reasillg the fuel flow io the

engille. It, nlaV bP seen that, :lfter the fllel flow

had been increi/sed 1)eyond i_ ceriain vahle, lhe

conlpressor-discha rge pressure suddenly de-
creased, the accelel'aiion fell i() a low vahie, and

the turbine-discharge temperaiure shot up lo 't

hi_her vahie. A condition of poor acceleration

acconll)aliied 1)y fluctu'ilinK flows alld telnpera-

ture paiierlls existed. This is It condition of

sla]l and Sllrge. TlillS> slall induces the delri-

nielilal condilions of high oller'iling ielnperaiure

and high vibralory loadinxs accolllp'tliied })y very
low acceleration.

FLAMEOUT

Loss of conlbustion can result from either Ioo

rich a lllixlure_ too lean a IlliXtllrO, or froln ili-

sufllcielflC atomization of the fuel. The overrich

mixture can occur during acceleralion from very

low engine speeds. The overMm mixture can

occur during a sudden reduction in fuel flow at

high engine speeds. Flameout from overrieh or

overtean mixtures can be prevented by limiting

the magnitude of sudden changes in fuel flow.

Ill order not |o inipose shllzgish engine rcst)onse ,
this limit, on fuel flow lllUSt, be varied with alti-

Jude, tlight speed, and engine speed.
Fl:uneout caused by insufficient atomization im-

poses an altitude ]iinit on engine operaiion. ]/e-
('allSe atomization is a function of 'll)solule fuel-

tlow rate, the lilnilinx altitude is lowered :is

engine speed is reduced. Thus an engine oper-

atinK at rated speed :it high altilude is subject to

flameout when the speed is reduced (even if

slowly reduced) for descent of the aircraft. The

relighiing of an engine at high altitude and high

flight speed is difticuli. Fxl)losions ]lave been

experienced under such stariillx conditions.
A minimmn fuel-ttow limil clul 1)e utilized for

ali itude fli/meoui prevention. IIowever, ihis pro-

vision iniposes sinmlt,uleously a mininnun thrust
limit. The minimmn lhrust limit, in lurn, im-

poses a nmxinmm angle of descent on the air-

craft at hiKh aliiiudes. If ihe maxinmm an_le

of descent is exceeded, the en,_ille thrust can drive

the aircraft to a desiructive airspeed.

METHODS OF CONTROL

This discussion _)f turbojet-engine reliabilfly

has been linliied principally to niodes of enxine

damage, possible with inadequate control. This
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section presents a discussion of basic methods

whereby control is achieved. Four control sys-

tems are described. The first system discussed is

the system having the minimum nuinber of auto-

matte components with which it is practical to

fly a turbojet engine. The remaining three sys-

tems discussed are the nlore colnplex systems that

offer more complete protection.

MANUAL TaROTTLE WITa OVERSPEED PROTECTION

One of the simplest control systems is shown

in figure 9. It is essentially a hand-operated fuel

valve with an overi'idmg governor to prevent

Sensors

/\Throttle F'--_ Volve

system

Inlet pressure

SUpl ly ondI

corr )uter I

Inlel lemperature

FmURE 9.--Turbojet-engine control system employing

manual fuel throttle with altitude-compensated supply

pressure and automatic overspeed l)rotection.

overspeed. The fuel-supply pressure is made

proportional to altitude pressure to maintain a

substantially constant engine speed at a fixed

throttle setting.

This type of control system was used on engine
A of table II and has a better record of relia-

bility than the more complex systems. However,

the control fails to provide acceleration control

with protection against compressor stall and

surge. Its record for reliability was accumulated

in service on centrifugal engines in which com-

pressor stall is less frequently encountered and is

of less serious nature than in axial turbojet

engines.

SPEED CONTROL WITH PRESSURE-SCHEDULED ACCELERA-
TION LIMIT

This method of control l)rovides surge and

stall protection by limiting the maxinmm fuel-

flow r_ te in relation to COmlu'essor-discharge pres-

sure a:ld compressor-inlel i)ressure and tempera-
ture.

The_'e Ineasurements are simple to obtain, but

the schedule based on these parameters imposes

an um__ecessarily severe, limit on engine accelera-

tion under many conditions of operation. The
reason for this is that the stall linfit is a non-

linear function of pressure ratio and is therefore

a nonlinear function of C.mlm,ssor-discharge

l)ressuJ'e as well. Furthermore, the devialion of
the st_ll limit from a linear relation with eom-

pressol-discharge 1)ressure varies with the inlet
pressure and hence with the altitude. As shown

in figure 10, a linear schedule based on com-

pressor-discharge pressure imposes a severe pen-

airy on acceleration at low llll(] hiffh values of

compre_or pressure ratio.

.= 16O ,_/

o_

120

o 80 Stoll ond surge limit ---,

1 t

_5 40 ti" '--Limited generoted by

.i control using function
0

= ./-" "/ _,,° P2-_
,'_ 1 l I I I I I

0 I 2 3 4 5 6 7
Compressor pressure rotio

3'ogo do 7'o 8'o
Engine speed, percent roted

FmURE 10.--Turbojet-engine stall-limit correlations, wl,

fuel tow; P_, inlet 1)ressure; P2, eompressor-diseharg_

presst re.

The use of a maximum-fuel-flow limit based

on compressor-discharge pressure creates a prob-
lem wi :h regard to engine starting at high alti-

tude. kt high altitude the compressor-discharge
pressuie may be sufficiently low to cause the lim-

iting of fuel flow below that required to obtain

ignitioJt. In this ease, the engine could not be

started following fameout at high altitude. As

a consequence, it is necessary to add an addi-

tional control component to provide a minimum-
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I"I(_URF, ll.--Gencralized m'tp of stall- and surgv-lin-dIed

fm.l tlow. wf, fuel tl(nv; N, unIzine Sl:U'cd ; Ph inlet

pressure; 7'1, inlet temporature.

fuel-flow limit: which overrides the surge control

at ve W high altitude. The minimum-fuel-tlow

limiter, in turn, imposes a new coInplicafion in

that it could, through malfunction or misadjust-

ment, cause overspeed at high altitude. An en-

gine caught between coinciding or overlapping

maximum- and minimum-fuel-flow limits cannot

be controlled by the pilot except by emergency

nm'ms. Numerous cases of this occurrence ap-

pear in the Air Force records.

GENERALIZED ACCELERATION SCHEDULE

The auxiliary scale drawn in figure 10 shows

that the surge limit can be correlated with en-

gine speed. A characteristic form of this func-

tion is given in figure 11. As shown in the

figure, a temperature limit exists which is lower

than the surge limit, in the lower-speed range.

A control that operates on a combined schedule,

as shown in figure 11, can provide both over-

lemperalure and surge protection during accel-

eralion. Such a control is more complex in prac-

tice than the control based on compressor-dis-

charge pressure but provides protection with less

loss of potenlial engine acceleration. Figure 12

shows a schematic diagram of this type of control

s3"sl era.

The generalized eorrelalion of surge-limited

fuel flow wilh engine speed is seriously affected

by lhe distribution of the air velocity at the en-

gine inlet. Distortion of the inlet-air velocity

profile reduces the surge-linlited fuel flow below

Pilot _--_L_ Sethng

lever

Sensors

Engine speed, N_

Inlet pressure, PI

Inlet temperature, TI

I Computers

'1 Speed

.M

, Acceleration
• computer

/
/

/V/V_l

Valve actuator

--_guel flOW, wf

(_ Note: Valve actuator

, operates on lesser of
two signals

FIGURE 12.--Turbojet-engine control system employing closed-loop speed control with generalized acceleration schedule.
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the values described by the generalized correla-

lion. Surveys of engine installations in several

aircraft, have revealed many cases of inlet dis-

tortion of sufficient magnitude to cause a reduc-

tion in the excess fuel flow for acceleration, as

limited by surge, by 50 percent. A characteris-
tic variation of this inlet-air-distortion effect is

shown in ti_m'e 13.

Pressure

profile

_oto/_l_ Tip

, i ivooe
t/111//_1II1_/II.)111 Hub

Ap

IcE

__._,. Ep2r_2e ' Sr_te _'

g 80

_,r-

U_ 60,
o o

= 40

cD

W_ 20
Oh

I i A

0 5 I0 15
Disf0rti0n, APIP_,,, percent

l+'l(;l:lii.: 13. 1.3t'ectof inh,t-air distorlion on "leech'ration
fuel-llow lilnif,

hllet-air dist(ir/ion is created lly the ducting

fl'()lll the liaceil0 ol)elling to the first eolltpressor

sla_e. It llUiV i}lel'efore lie l)l'eSqllllod tlial the

llrobhqn is ()lie thai lilaV lie largely solved by im-

[)rovolllelltS in dill'lilt 7 design. This llltl} _ lie real-

izable in slower :lircraft such as transport aircraft.

l [owever, in high-sliced aircraft inlet-duct airflow

is very sensitive to ttig'ht speed and allgle of at-

tack. Therefore, it is very ditticult to eliminate

inlet-air disiol'lion by duet design for all flight
conditions.

Ano lier fa,'.lor that seriously att'ects /lie corre-

lation shown in figure 11 is lhe period of time be-

tween deceleration and acceleration. Engines

whMt iu'e cycled through several successive accel-
erations aild decelerations show a reduction in lhe

excess fuel flow for acceleration Its limited liy

surge by its much as 50 percent. This cycling can
occur hiring landilig or flight refueling maneu-

vers. The effect does not take place if the period
between the deceleration anti lhe acceleration is

longer than approxinlately 15 seconds.

htlet-air distortion and acceleration cycling are
faciot_ which are random in nature. It is there-

fore not possible 1o correlate the effects to meas-

urable l)arameters. ]li oMer to avoid stall 'rod

surge i L is therefore necessary to limit fuel flow to

accoun" for the worst possible colidiiions. This

liro('e(l_u'e imposes tt loss in avaihdile engine aceel-
eraiioi_ when the hazardous conditions do nol
exist.

]{e('ailse o[ these ditti<-uliies with s<'hedule-tyl)e

iicceler it ion controls, aitentl)iS have been made to

devise niethods whereby the threshold of stall or

surge tnay be detected. If this can lie achieved,
acceleration controls can be devised which do not

unnece:_sarily liniit acceleration under any condi-
lion (tof. 4).

TEMPERATURE CONTROL

]-11 t] e section OVER'I3Z3IPERATURE it iS showll that,

in lhe +'ase of the fixed-exhaust-nozzle engine fly-

ing beow 40,000 feet, control of engine speed

siuniit_tneouslv conl rolh, d turbine-discharge leni-

peralule durin_ equilibrium riinnin{z. The addi-

tion of surgc-l)revenlion schedules it) speed (JOIll I'Ol

can +_iliultaneously provide overiemperature pro-
iectitin durintZ ac('eh'riltion. These two fatqors

have li ado |)ru(!li('al the use (ill i,iigilie e(iiltrols

whi(']l ,Iollot direci 13 ineasuro or (qintr()l lurbine-

(lischl/r_ze tellli)i, rlllure. Tim widesl)read tlSe Of

speed 'ontrols wilh sclieduled-type protections

a_ilillSt Slll'_e :llld overlelllpel'ature has probably
discom'tged ihe tleveh)pment of direct control of

lemper:dure. Nevertheless, tlle direct control of

teniper:dure lirovitles lhe only positive me,l.ns of

l)rovidi:ig protection against overlelnperature

damag( under all conditions of oper'ttion.

A su:'ge-limit correlation exists between gener-

'flized turbine-discharge temperature and engine

speed (ref. 5). The characteristic form of this
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correlation is shown ill li_ul'e 14. It llierefore

:li-q)ears pos.-ihle i. el)lain Slll'_e |/revelilion

liirou_h lelilpel'alllre 0olll l'ol aecoi'dhi,# 1o a OOl'-

l'elilliOll elll"ce Sllt'h :.is ti_lll'e 14. Tills factor

conihined with the fm'ior of positive protection

li_ainst overleiilller:llllre will lnal.:e lhe devel.p-

liielit of leniperalure conlrols all hii|mi'l_il/t slop

lowiird iniproved eiisine reliahility.

It is 11ol }tl'alqical 1o consider speed CoI/tl'o] ])y

vontl'O] of tul'llhm-discluu'_e ienll)erature because

of lwo faeiol'S: (1) lhe ll;/l'l'OW miirsin between

niaxinnnn rnied speed and stress-rul)ture speed,

aml ('2) the insel>iiiviiv of turbine-di.-dlai'_e

teniperillure to speed changes at low engine speeds.

Tile eon/hination of dii'eet overslmed protection

with sll l'_2"e ill/d o vel't tqll pel'l/t I i l't' pi'oteei ion

|hl'OllSh I elll|)el':l1111'o 0o1/I l'ol :ll)pears t o be a very

desirable eonlro] nleliiod, lIowever, the develop-

ment o f ('Olll l'O]S I):/se(l on 1}its nielhod nlust await

the developnlent of qll :idequale |ellll)el':/llll'e

SiqlS('ll',

BASIC RELIABILITY OF CONTROL METHOD

Autonpliic control s vSleliiS can 1)e divided into

lwo 7ener'/l grOlll/S _ l}lal is, open-loop systems al/(l

closed-loop sysienis. Boili 1,vpes of control svs-

loins and OOliilthlalions of the lwo lypes have beeil

enil/]oyed in lurlxljet-ensine service. Igig-Ul'e 9

_iiows a eontl'oi l}ml ol)er_/tes as ;ill open-h)o 1)

control at speeds less llial/ lll;iXillllllll speed. Ill

this svsiem the altitude-cmnpensnted pressure

_Upl)iy varies lhe thrlltlh, inh'l l)l'eSSlil'e in I'e-

sl)()ilse t(i air l)l'eSsllre ail(I lenillei'alure llal':inielel's
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relating :tltihide and ralll pressure. The variation

is niade in ,leeordanee witii "/ preset schedule to

lnaintain enKine Sliced at a substanlially fixed

vahie al fixed lhrolile selling. IS'actors such ,'is

l/Olliille;ll' schedule requirelnents; engine deteriora-

lioll, and internal friction in the control elemenls

inirodm'e ]_ll'_e inaccuracies in speed control l)v

this method. Because of the extrelne inipm'talwe

of speed control in the turbojet engine, such con-

il'ols lnlls[ I)e eOIISlilllllY li'illlnled by the pilot

l/ill| lnllSl lie prelected by all overspeed governol'.

]n ihe closed-loop 0onlrol mettled it pnrtieular

vnriable, such :is eligine speed, is continuously

liieaslil'ell and a eomrollili 7 variable; such :Is fuel

floW, iS aulonlatic'ailv varied to lnaintain a vallle
Suchof engine speed llu/l is set l/y tile pilot, a

S V,_It'III is S}IOWII ill t]_lll'e 1_. The closed-loop

('onirol can be ex(remely accurate and is not ilf-

fecled l>y nonlinenr fuel-llow requirements, en-

7ine deierioratioli> or ailiiude and ram-pressure

effects. The closed-loop s YStelll iS_ however, Slll)-

ie.i I. coniplele ln'eilkdown in a phenonienon

knmvn as unslable oseilhliion. The susceptibility

of l]le ('olllroi I()oscillntion is often inerease(t lly

slei)s lakell 1o iniln'ove control a{'ellraev over a

wide i'allge of tlishl ('onditions. Nevertlleless,

prolier (lesion of control-...ysleni and fuel-systeln

('Oili|)oneilts Io oidaili i]_.e necessary dynamic re-

._ponses Call niake this type of nmlfunelion ex-

I relilel v l'ai'e.

111 the closed-hlop sysl elllv (iverspeed protect ion

is o})iained hv simply ineorporaling a nlaXilllllnl

liniil eli sel speed. An open-loop svstelil 1loin7

('onirolled l)\ the overspeed goverller is essell-

lially a closed-loop systeni with it fixed v'/hle of

sel speed.

FU FL-SYSTEM-COMPONENT CONFIGURATIONS

The c()nlr,)l conll)onents and the fuel-systein

{.()llll)ollel/|S lllake 111l) what is generally considered

:is the fuel svslelil of file tui'l)ojet engine. In ils

1)roadesi SCOlle a discussion of fuel-system eompo-

nelllS eouhl inohlde Sll('h eOlllpollelltS as pllni|)s,

valves, fittings, tubing, nml filters in addition 1o

fuel-injeciion coinponents. Aside fronl the fuel-

injection eonlponenls l]lere is 1__0component in lhe

turl)ojet-engine fuel s),stenl that is not frequently

found in oilier hydraulic systems. For this rea-

son the following discussion is limited to fuel-

inje(.fion eomllonenis.

534962--61--13
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Wilh regard to both inherent performance and

reliability, the problmns associated with fuel-in-

jection components ott the turbojet engine stem

front flow range. Operation of a turbojet engine

<)vet" the range of conditions extendin_r from high-

speed flight at low altitudes to gliding descent

at. high altitudes requires control of fuel-flow

rate over a range of approximately 1[)0: 1. The

successful operation of an engine over this range

of conditions is, in a great measure, dependent

uptm the ability of the fttel-injection components

t<l deliver a 1)roperly atolnized fuel spra.v to the

hlll'llel's il.lltl tt) lllaill|ain eqllttl ||ow l'ates tllll(Hl_,., r

the several burners.

Fixed-area fuel nozzles.--The problems associ-

ated with liquid :Uomizal ion over wide thin l'ttll_'e>_
hltve led to several different types of l'uel-at.nl-

izin_ n<)zzle. Tire siml)lest nozzle is the lixt,d-arett

swill m)zzle, which is shown st'hemlttiually in fi,,/-

LI////,

-H-.N
f/

Sw+rJ chamber

Section A-A

l,'[.t'I_E 15. +-Schenmti(' diagram of fix(,(l-_m'tt swir[-n.zzh,
inject ion systt,llt.

ere 15. The n()zzles are distril)uted nround the

engine burner system and are t'otltlecied 1)y a
eomm<)n tube. Fuel is nmtel'ed into a swirl chtun+

bey throu,2..'h tan v'ential l)aSsa_es. The rolatino/

fuel tltell tlistqlarges through it _'ir('ular Ol)enin, _

to form a holhm" conical sheet of spray, lit order

t<) deveh) I) the c<mieal spray, a fuel l)ressut'e drnp

<)f al least lit l)()untls l)er SqttttFe in(+h is required.

l_ecause of this minimum pressure rt,qtlit'tqnent

and l)ecause tilt + l)ressut'e drop lhr(m_h the nozzh,

ill('l'eilses ;ts tilt' S(ltlill'e <)f the flow Fate, the Imtxi-

mum flow range is lilniled to about 10: 1. The

fixed-area nozzle is a very reliable device, but

because of its liInited flow range mumot be utilized
in hi_:h-altitude service. The tixed-area fuel noz-

zle in poses another price for its simplicity in the

form of dittieult starting. For these two reasons
tile lixed-area fuel nozzle ]ms been abandoned in

turl)<)iet-engine l)raetiee.

lVlultiple-entry nozzles.--A nunlber of designs of

multil,le-entry fuel nozzles have been deveh,ped

which overcome, in various degrees, the short-

.,,-- To other nozzles

FIH I" RI':

Id////////////l

Flow divider:'

16. S('ht+ntatit' dia_raln of doul_h'-i,t+try swirl-
nozzh' inj.clion S VSIt'III.

_'()min z's of the tixed-area nozzles with regard to

l)oth lange and starting. A form of a double-

entry nozzle widely used is shown schematically
in tig+tre 16. As may be seen, this systenl re-

quires :in "l<lditional component kll(iwn its the flow
divide :"and an It(l(lit itmal manifohl and associated

pipe ,' mnections. The fuel nozzles have no mov-

illg_ l/:trts. At low ltow rates the llow divider

Ivansndts flow to the snmll tangential Ol)enings in
the s+_it'l (+]l,tlllll)el'. _Vhell the tlow is in('rettsed

bey<m<l It preset value, the fuel pressure opens
the flew-divider valve :m,l fuel is transmitted to

the llt 'ge tlul_entiIl] openings. By this means a

hi,/h swirl velocity is <)t>lail|et| tit low th)w t'ales,_

and e:eessive l)ressures are avoided at high lh)w
Fates.

The th)w divider is aVtllaled l_y fuel l)I'eSSUt'e_

and th_,refore lhe rate of thnv dis(+har_ed into lhe

en(.rine :it a (..,,siren inlet pt'eSSlll'e is subject to the

fltm+li_,nin_ of the lh)w divider. 3[alfunetioning

of ihe thlw divider ('tilt be very serious. If the

malfmt(qion is su<'h that the llow is high f<)r It

a'iven llressut'e], fuel atomizatiotl becontes i)oor

with t]_e consequent loss of fuel economy. Under

('ertait: conditions IJhtw(mt may result. If the
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m:dfunction of the ttow divider is :qa'h that the

th)w is low ;1! a _iven inlet pressure, it may not

be possible to attain rated envine speed at low
altitudes.

17nifornfity of fro,1 distribution ltlllO]l_._ []le st'v-

eral nozzles in the sV.'-.lel]l is obtained 1)y lllm/il/-

tainin K close mamffm'tm'in K toleram'es on the noz-

zle dimensions and by periodic Ilmv hem'h call-
ln'ation of the individual nozzles. A serious error

in distribution ean develop in lhis system if llle

small tangential openin_zs of ore, or more of the

nozzles become partially or entirely clogged with

lmrticles carried by the fuel. As shown in ti_zure

1(;, the pressure developed on the walls of the
swirl chambers is trnnsmith, d lmckward to the

manifold. If dilt'erenees exist in the pl'essm'es :d

the walls of the swirl ,hamhers, a flow will result

in the manifohl, l{v thi._ action, fuel metered

into one _wM (,]mmlwr can he disclmr_ed from

another. If a .<mall tangential Olwnin.,z" is seri-

ou._lv cloeged, there will he little pressure devel-

uped ,m lhe chamlwr walls ;rod the nozzle will run

very rich at the expense of the others. FIurner

damage is very likely under such conditions.

A method of pveventiw d interflow in double-

ent ry nozzle syslems that has 1)een adopt ed by one

engim, mamffaelurer employs separate ]tow di-
vi,h,rs for each nozzle. The tlow divider is built

inlo the ]lOzzle housing. This systeln eliminates

one m;mit'ohl aml associated tittinKs but involves

a consideL'al4e into'ease in the mmfl)er of movin_

p;|rts. FlowIdivider ,'h;u'a,-teristies must be care-

fully nmtched for uniform dist|'ilmtion.

OPERATING CONSIDERATIONS

EMERGENCY PROVISIONS

It is ffemwal practice in military turbojet air-

,'rafl to lwuvide means f,w Olllel'gellCV ol>era/ion

<If l]le ell_ille ill the event of control or fuel-

sy,_lem-,'omponent faihn'e. There is l itl le ques! ion

that ibis l)r;wtice is .iustifit,d, but the degree to

which il is in@cmented v;u'ie._ eveatly. The sire-

I
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FIGURE 17.--Tm'l)ojet-emzine fuel system employin_ mnerKency fuel pump.
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plest elner_ency control is a manual fuel thr<)ltle

that. (,Olnl)letel X overrides all other eontr(ll con>

portents. The most eonq)lex elnel'_eney control

system comprises a ,'Oml)lete duplicali<m of the

primary control syslenl. Emergency fuel l)Uml)S

are usually carried hy auilitarv turbt)jet aircraft,

but it is m_t feasil)le to install emergen,'y units

for olher fuel-inject ion ('ompt)nent s.

In sl)ile of tlle obvious advantage of the exist-

en('e of enwvgency ('.nlr()ls in an instance of fail-

ure, there are two o/@('tions to the l)raetice. The

tlt'st ol)jeetion relates to the itlcrettsed emul)lexitv

Of the eolttro| s vstelll el'care(| 1))+ tile elllel'_etlcv

controls. The second ol)jeelion l'eltl(es to the need
for transfer valves, ('heck valves, and the lilac re-

quired to put the enmr.aeney systent into opera-

(ion. Fi+zure 17 shows an exanlple of this type

of eomplieatitm which occurs in the ease of a

fuel system that entl)h)ys an enler_'ency fuel lmml).

In file ligure, the conq)otmnts added l_v tilt, emer-

gency svstelu are the following: I1) auxiliary

fuel puml) , 1+2) 1)ressure-l'elief valve for auxiliary

puml) , (3) ehe('k valves, (4) porting' in control

valve ft)r seleetin,_" nmin or Ituxiliar.v lmntp, and

(5) required piping and e(mnection.

Emergency cent r.ls can be effective only if fail-

ure of the primary ¢(,mrol does n,)t cause destruc-

tive danlage it) the eng'ine. Destructive (ill(little

through control failure t'alI usually be art)ideal if

the eomrol is desi/ned to redu('e en/ine 1)ower

and tetuperatttres in the event of the tn<tst likely

failures t)r nmlfunetions. This '+fail-safe'" 1)roy| -

sion is ('omnmnly l)rovided in l)l'esent tlu'l)ojet-

engine cent rols.

Another tllelttlS t)f avoiding destructive dtltll:.t.'re

throuTh control malfunction is through the use

of sufficient instrmuentation or 1)5" means of a

warning system whereby the pilot can detect im-

pendin_ control faihn'e.

A seeoml requirement for effeetive use of emer-

gency cent i't)ls is pilot training for operation with

emergem'y t,tlntrtlls. This is espe('ially true when

the emerten('y control svstenl does not carry ()tit

as many functions as the primary e<lntl'(ll system.

GROUND MAINTENANCE

Ground maintenance of en_ine-e,mtr()l ('_,ml)t,-

nents atu[ fuel-injeotion components involves t':,<)

functi,ms. The tlrst of these fun(-lions is inspee-

lion: the second function ix atljustnlent.

The purpose of inspe(-tion is it) prevent faihu'e

l)y re l hlcenlent of worn <)r weakened pat'ls. Aside

from the nmin fuel l)unq), there al)pear to be

few fuel-system or centre|, eOlllpOllell|S thtt| rife

sul@ct to wear-out failure. For this reason, tech-

niques must 1)e deveh)l)ed fro' detection of t'onq)o-

n(mts _n which failure is ilnl)ending.

The dele('ti<m of iml)emlin / failure can often

l_e a(',',mq)lished by nleans of 1)erich testin/. Test

lwm'h(s are in use fin' insl)eetion and adjustment
()t' ftt(1 nozzles, oversl)eed ,.z,'overnors, sur,.z,'e-l)re-

venli,)l COIILI)oIIeIIIs, tlll(l J)at'onletrie s,'hedttling

devi('e-_. A discussion of I)eneh testing of turl)o-

jet-en/ine fuel controls ix _iven in reference t;.
Itl most (:lisPs, bench tests of ('OIIII'O]-NVSIOIll

eOml)(:nents are concerned with steady-state cali-

|)ration. This is an important and necessary test

lint is not in itself a eonll)lete test. ()n the en-

gine, the mamwr in whieh the control comp(menls

resl)ot (| to ral)id chan_es in l)ower level am[ tli_'ht

(-ondit ons is also extrenwlv ilnl)ortant. For ex-

alnple in order to ensure proper performance of

such e,)lnl)onents as SUl'_e-l)roteelion devices, it is

neeesslt'y to duplicate engine acceleration on the

it.st ])filch. ._k test bench for dynamic testing of
l ltl']l()j q-eng'ille ('onll'<ds lilts 1)een re('elltlv devel-

,,l)ed Ind is reported in reference 7. In the ('ase

of <'h_e(1-h/t) l) ('ontrol systems, dymunie lwneh

lesling can be used lo,'he,'k('onlrol stab|lily.

M<)s fuel-inje('tion and ,'onlt'.l ('(mll)()nenls are

ntt'eete l by solid 1)at'tich.s in the fuel. Effective

filtration and re ffuhu' rel)laeenmlH t)f lilters are

t[teref,)t'e a very ilecesStll'V llltl.illtellllllce ll('tivitv.

l,nl)et_(lin _ failure due to dirt a('eunutlation can

vel'y <,lien l)e detected in tilt, process ,)f bench
testin V.

PRETAKEOFF INSPECTION

Il) ;pile (ff the most l'i_id ground nmintenan('e

and i_ sl)e('tion, 1)retakeot[ insl)ection t)v tlle pilot
remai_ s as a very iml),)rtant activity. Many <.on-

tr,)l al (l ellgille lnalfunctions Ctlll he tlett,ete([ with

relatixely siml)]e instrumentation during" _r.ttnd

el)el'alien of the ell ffitle. Table IX" shows lhe

t.vpes if malfunction lhat C;lll be deteetetl itlltl lhe

means 1)y which the dete,+tion ix ma(le. The ma[-

t'tm(,t i, ms listed in tahle IX" "u'e limited t,) those
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of a g'eneral nature. In the ease of a speeitic con-

trol. it is likely that many other indications can

be used 1o detect other spe 'itic malfunctions.

"I'A]_IIA,; IV. -MAI,FUN('TI(tNS 1NI)ICATI+H)

1)UIIING (Ill()UNI) OPEII.VI'I()N

Mnlfunelion

( _overll(H"

Main cot(trot

l Ii_h-l)t'cssttre
fltel leak

Indicat ion

I [i+zh top speed

l,ow lllZtxinltltlt file( fi()w

Slow acceleration t,() top +pe(,,t

Sllr_e (htrin_ acctderatiot(

lliMl fire[ flow at top Sl)eed

Ft,(d-inject i(m [Iigtl fuel tIow at top spcc(l

120IIlpO (lOll+( -" --i

[1 igh fHel-lmm p discharge pres-

stir(! :tt top speed ]

I.ow fuel-Imnq) (lischar_(,' I)rcs-
sure :tt top speed

!

lligh taitpipe temperature at 1

lop speed i

Irregul:tr circHnffel'['l(lia[ tem-
l)erat uro (list t'i|)ut ion in I:tiI-

pipe

ADDITIONAL INFORMATION NEEDED FOR IM-
PROVEMENT OF OPERATIONAL RELIABILITY

At tile present tinte the need for iml)roved

means of acceleration control is the most pressing

engine fuel-control 1)roldem. Because of this, en-

gine aml e(mtrol lllttllllftl('llll'lWS alld associated
l'eSeal'ch |al)ot'tttories tit'( _' illlensively illvesti_atinK

surge and stall. +ks was pointed out in the dis-

eussion of sttv_e and stall pt'evention, present ae-

celeralion etmtt'<fls iq>el'ale otl the basis <ff fuel-

ttow-limitin_ schedules. Because of the many

factors that affect this schedule, +t eonsitleral)le

margin <)f safety must l)e eml)l¢)yed. This safety

lllat'_ill ttnllecessttrily limits lilt, a('eelertttion rate

under lllttllV e<)nditi(ms of <)perati(m. l.ilniled

a(.,+(.eh, rati(m durin_ ('oral)at ()r landin 7 wave-off

can result in destruction of the air(waft. It is

gem, rally believed that basic infornmti<m on the

ftmdatnental nature of surge and stall, now l_t,in_

oblailled, ++ill I)ermit tile desiKll of a(,(-e]eratiott

controls which will permil maxilnutn a(.celeration

rates at all conditions.

The need for direct cont t'<)l of temperature is

not as 1)t'essin_ as the need for iml)roved accelera-

tion control, but there is litlh' question that the

(h,vt,h)l)ment of a hi_'ll-lentl)erattu'e sensor httvin,_

lutth l(tn,_ life and K<..1 dyltalnie l'e+l)t)l/se will
lead to nteth<+ds <)f control lh:tl will result in

imlH'oved <)pPl'tt|iona] reliability.

The _enet'al fiehl of atttonmtic control is now

developin_ very rapidly. It is very likely that

truer<wed analytical leohni(lues in (:ontrol de_i,qt,,,

ttn(I iml)t'ovt'd dt'si,_n and construetion of hasic

autonnttic c(nltr()l c'Oml)<ments, which will 1)e de-

veloped, will lead to _t't,ater relial)ility and im-

proved perforln:ttme of the turl)ojet engine.

CONCLUDING REMARKS

The results of this study of the effect of engine

fuel-control reliability on the ol)eralion:d relia-

hility of tile luvlJojet engim, have shown that con-
trol nttflfutwtit)n Call ('arise either illlllledittte de-

strtt(qion ()f the engine, serious redttetion in

engine 1tower, or reduoed life of engine eOllll)o-
nenls. Slat isties show that at the 1)resent time

the frequetn'y with which etmtrol nmlfunetions
O('('lll' is Sel'iOllS.

At the present time the need for improved
means of :t('eeleration (!.nt t'<)l is tile most 1)ressin,_

e(mtrol 1)rohlem. Los>. in engine power due It)

itnl)rOl)er fuel-thin + limitin,_ l_y inade(ltutte or m:tl-

functionin_ acceler:tti<)n controls is as _et'ious a
llrol)lem as dire(!( danm,?..'e lhrott_h control mal-
functions.

Improved control in the tiehls of fuel atomiza-

t ion, st art ing, flante<)ut protection, tlnti temperature

control can result in sio'llifieallt increases ill tur-

bine and l>urnev life. II<)wever, while intl)roved

"tnd exlntnded c(mtrol operati<m can yiehl im-

lwovements in both ena'ine performance and cent-

portent life, increased ('onlrol eontl)lexity increases

the probaltility of control faihtre. Increased COl>

tt'()l conq)h'xity must therefore 1)e (ill'set I)y im-

proved relial)ility of (:ontrol ,:()nq)onents, and

facilities lllllSI be 1)rovided for lllttintelltlllCe anti

inspection of eomph, x t'uel controls.
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CHAPTER XI

SUMMARY DISCUSSION

By I{I,:N,IAMIN PINKEL

SUMMARY

INTRODUCTION

ExamimUi()n (ff the individual slu(lies in(li(':ttes

that the e'mses fol' ('Oral>orient failures ('()me un(lei"

(he folh)win_ headin,-s'_ .

1) Underdesio'n and defects in materials and
lilt./II II g:lq" [ I I 1'¢

2) Wear

3) Cree l )

4) Fatigue

5) Forei_n-(,h,ie('t d;).nmge

(;) ()verleml)eralure an(I ()verst ress

7) Thermal (list()t'lion and thermal fat i,/_'ue
) ('ort'osi()n and s1ress-('()rr<)si()n

,q) Fuel-c:(m( r<)l malfun<'(ions

S()Ine ('(roll)orient failures ri,sull I'rou_ weak-

)]('ss('s thai can l)e ,'())'recled l)v al)l)li('ali()ll ()[

s(:tn(laI'd meth()d_ in desist| :m(l m:tnufiwture, and

(hey should event ually l)t, elimin:Ue(1. These fail-
ur(_ fall under ilem (I). The n(,x( three items,

v(eat'_ ('I'ee[), all(| fali_lle, (qtIl (':.lllSe l)i'()_l'essiVe

deterioration in the s(ren_th ()f s,)me ()f the en-

gine coml)onen(s an([ eventlutl f:filure of these

c()ml)<menls. The times to failure l)y these me('h-

a)iisms can l)e rouo'hly l)re(li(:ted fr()m the data ()n

)he affe('te(l ('on|p()nen(s when (hey are operale(I

under well con(rolle(l tonal(lions. The i'em.finin,_

items lisle(I, an(I in s<)me eases fa(i_ue also, can

cause Unl)re(li<'lal)h, and eai'lv failure of engine

compone]ds. The various causes of faihlre listed

and the ('(mq)on(,nls involved are discussed. Fail-

lll'e (If CliO'(lies I)y ellVil'OllllWll[:|l (':_lllSeS, Stich :IS

i(,in_ and dust (,).(,..<i())_, may occur, lh>wever,

these l)rol)lenls :ire no( studied in (his rel)<>rt.

Me(h()(ls for (h(. improvement ()f ol)eralional

relial)ilily are (lis('ussed under the f(>lh)win_

headin_'s :

(1) I)esi/n

(2) Insl)ee(i()n in manu fact ure

(3) Insl)ee(ion in service

(:_.) Scheduled I)3' time

(1)) Scheduled on basis of contingency

(a) Flight checks and warning devices

(4) l{el)la('ement s(q_edules

(5) Records

(6) Operational and repair practi('es

'l']w ad(lilion:d information neede(l It)iml)rove

()l)era(ional reliability presen(ed in the individual

1)al)ers is summ.u'ize<l.

REVIEW OF CAUSES FOR ENGINE AND COMPO-
NENT FAILURES

]_,efore lhe review of (he causes of engine fail-

ure, the lin(lin_s presented in chapter II l'elatinv

(o ('<)ml)onem faihn'es exl)erien('(,(l in military
sel'vi('e life 1)rieflv Slllllll/tl.l'ize(l.

STATISTICAL STUDY

l)isnss(,ml)ly Inspection ]&,ports nre l)r(,l):Ire(l

i)y h_sl)ecl()r.'< a( overhaul bases and rel)()rt (I) (he

])l']lllal'y t'ezlsOll lot" the enable goin,_ t() ()vel']mu]

197
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"I'A1H,I," I,--REASI)NS FOR OVEI{IIAUI_

()F E N(',I N E,q

[Aug. to Oct,, 19.5;_]

lgdlures associ-
alud with

('7

PoF('(qll of en/_ines ov('rh:tll]Od

( 'ODI pl'('>,_Ol '_ _

Blades ..... 5
Slalors .... 1. -t
Disks .... 0

('asin_ ..... I 4. 3
Mi_cell:tnvou__ 1. 4

Main tieai'in_s__ 7
A('cossorv I)ear-

ings___" ...... I 1
(!OllitnlslOr ns- i

selnlflv "_ . ! 5
()ul(q'_h't,lI__ i 3. S
Imwr shell_ . 5
Tr:lnsition

iiliOl' _ . 11
]"llt+l Zlll/.zlt! + .5
Miseclhtnl'ous_ l II

Turbine _ec-
lion _ _ i I I

Nozzh+ dia- I
1fl l'aKni ___ 9. ,5

]hl('kct__ . ,5
l)isks _ _ I 0

llilWr ¢_i_

t):illlt! 11

3[iseellaiicous_ 1. 4
A ('t'essol'ios 1 I

l"ureit_ll oh-
jeers b_ . 3(i

()lh('l" (+HIISOS <' i 7S

X|(';III lilnl, 1o

ovi,rilalll, hr :gO5

S:mlllh'_izc __ 21(1

Ent.(i no code

A 7 ! B '3 B 9

i
I

!i i 12 4

5. 9 '2. 7 0
.7 4.1 11
.7 1,4

0
1.5 ,5.5 '2.7
5 (I 7

l) 0 S

1) 1(i (i
0 0 (i

0 (t (I

l) 9. il (i
li t) ()
0 I) 11

I IG i)

.7 15. 1 I)

.7 1.4 0
iI (1 11

(I I) (1
(I l/ (I

1 7 3

57 2(; 59
27 29 19

B 10

5
0

• Ii
1.2
l)
3. I
4

1

I
(I
0

• {;
0
11

3

(11"

t1
• 6

7

42
39

160 !247

136 73

55 ss

73 161

" ] )ta'S ilOt hl('hld¢ flm:ign-iibjcct dtllll_l!_t%

t_ I)tllntlge was IIlaill]y ill the {'<lIIll)rt,ssor

¢ Tc{'hlli(,al-ortler (!{llIlt)li;inct _, o_l,lt_,Ill[)_,l;ltllrt _, i)\l_rs])el+iI, (,r;l>]l, ;lllll

:wcidclll.

and t'2) the addili<)liiil ,'onlllonenls l+equirhl_ re-

lmiP (Jr i'elilaCelllent discovered dut'inff (Pl+Pl'h;/ll].

The |)l'iliittl'v l+ellSOliS for OVel'han| alid the o|)el'-

:lthie. iinw (ni ihe ;i_.t,l'tl_t _ tql_2"inl, hi ovt,l'haul nl'e

Shl)WIl ill lalde 1.

Addilioiial ftiihil'eS found Oll d]_a._enil)lv al'e

showil ill inllle ]I. _tit t, Xtl'(qllP]V ]titl'_0 ])ei'('elll-

age (if Dliltil>eS is attrilmted I() foPeign-olJject

danul,,.£e. The lai'_e nlnnl)eP of 1)al'l_ lhll{ reqllli'e

replacenienl a fleP relal iw,lv shol't ()pei'alin 7 t inies

is also appareiH.

]_et'altse of the l)reseni 1)olicy ()f repairing" hot-

seotion ciinilionenls in the field, l]ie)" ape infre-

qilenl C'allSeS fop ellTilie ovei']l'ill]. Tile fl'eqlleli('v

<)f en;rine rep'tir precipitated 1)y hot-section con>

ponei t failul'e is indicated I)y dala ol)lahied froin

l]ie l, idd )[tlinleninice and ]_opail's Silmnmries

(tal)]l' III). Tlll'l)ine shaft l)t.,lll'inffs are also

in_l}e,'led and replaced in tleld repair.

Tal,le III refers speeitically to engines sent 1o

tiehl :'elmir. Most engines in service receive liehl

TABI,E II. ENGINE PAR'I'S 1{]_; PLA ( 'E D D UR I Y G

()VEIl] tA UI,

[Allff, |o I)et,, 19531

ELll_ine p:trl
repl:iccd

PI,I't,I,IIi ()f Otlgillt'S OVt'I']IIIIll(+II

(' 7 3.

('l ;inpr{'ssor It .... 22
I_lades ...... ! . 5
_4tators ..... 9
)isks ..... II
'aSiil_ ..... ,"4. 1

\Iiseellnne-

ous _ 6. 2
3| tiil ])t!;ii'ili_S_ i 39

+it( t%'SSoI'y ])P',tF- ,

n_,s .... 64
('4 I]ItlII_|IH" ItS- !

senll)lv • 44
hltor sliell_ ! 5. 2

:llIIl't +sholl 43. 3
l'rallsition

liner ....... 0
..5;1101 nozzle

\liscell:tne-

(iris ..... (1

Ti rtfino +c'c- i
lion + _7

'q()zzh' (liit-

i)]IFH_III _ ,'_5.

hlt'kl'is__ _ 1.
)isks ()

lilt01" {:i_

I)allle _ _. 3.
\liscolhtne-

(HIS 11
A(rcssories _ 14

1"( reign ob.jecls S4
'()lnl)I'es_or b 50.

lfl:uh>s 49.
St at (It's_ _ :]2.

( !asiil_s_ _ 1.
_Miscelhi-

lieOll_ _ 24.

l'ii rbille _et'-
lioil b 75.

N_lzzh, di't-

i)ht'a_ln GG.
]tuckers _ 7(1.

._| ':tit lime lo

)vt'rlllinl, hi' 1',_05

SarUlflO size__. 1210

12
6. (i

.7
1..'5
0

4.4
31

57
2.2

55. 9

.7
'2. 9

.7

.19

42. 7
7.4

.7

s 0

1.5
9

S5
3 _1. 1
3 S3. 4

3 72.1
9i 1.4

i

2 14.7

4152.4
1

N i 22+4
_i 49. |_

!1 Ill)

i136

|']n_iln! cod(,

7 B 3 B 9 B I0

15 5 "
1.4 1'i

I 0 . |;

0 I. 4 I..9
1.4 0 1.2

{i. 9 2. 7 3. 7
1111 '2 !1 24

'29 1 1 2

26 3 25
0 0 .6

IlL 4 '2. 7 23

Ill. 4 0 1. 2
11 (i (I

0 (} . (i

4<'4 4 14

3,5. t_ 1. 4 s. 7
2S. S 2. 7 5, ti

0 0 (1

0 {I 0

27 0 1.2
<'4" 1(} 12

33 73 |it;
31. 5 6{). 7 t12. 7
2S. N 1i{). 7 62. 1
2S. ,_ |17. ti 5,5. 9

1.4 0 I.S

2. 7 0 1. 8

lfi. 4 43. 4 43. 5

'2+ 7 34. 2 31. 1

1ft. 4 43. 4 40. 4

247 55 ,%_

73 73 161

" Doe; riot include foreign-obj(,(+t (|alila7o.

b Fort + gll_()iljt, t+t dlirlltiK¢.
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TABI, E III. ENGINE (_()MI)()NENT REI'I,ACE-

MENT IN FIELI)

[April to June, 1953]

Engine component
replaced

Nozzle dial)hragnl
Turbine bucket
Turbine disk .......
Inner liner .........
Transition liner_ _.

No. 3 tmnrin_ ....
No. 4 t)e:trin_ ......
No. 4 oil seal .....

( _OIIll)I'(!ssor rework a_

S:unph! Mze_

Percent of engines in
field repair

Engine cod(!

A B (?

i 55 3S
22 l0

16 55
3

22 3
36 3
13 1

1 1S

322 340

3 !
25
[7
34
33

3
; tl

7

19

1,261

Sllt'h as "stf)llillg out" of lllill(ir I[li(,ks ill COlll_)l't_ssor b]_ides.

l'epllil" ILt 101lst, OllCe_ an(| sonm engines aro re-

paired many times between overhauls.

In 1(.)5:/, '_)05 airplane ac(d(lents were atlributed

to engine malfunction or failure, of which ap-

proximately 50 percent resulted in destruction

of the airl)hme. The causes for these a(:cidents
ni'e listed in lame IV. These. (lata were taken

fronl slalisli('s l)l'elmred t)v lhe I'SAF I)ireeto-

rate of Flight Safely lh,se:u'ch. Although no

failures are allrilmte(l t(> f(weiKn-obje('t dama/e,

lhe Colnpl'cssor is ('hav_zed wilh a high percent-

age of the faihu'es. II is SUSl)ected that lhe 1)tin -

cip'd cause fro' c()ml)t'cssor failm'e is foreign-

ol,je('t. (lam'/ge.

TAI¢I,E IV.--CAUSES ()F ENGINE MALFUNC'TION

OR FAII,UR, E TIIAT RESUI:FE1) 1N AIRCRAFT

A( '( 'I I)E NTS
[l)uring 1953]

Faihlre

Fuel controls__ _ ]
(_oml)rt,ssor _ _ ]
Turbine bucket I

Tuft)ira! disk ...... [

Total ........... ]

• i
Number of _ Percent of
:tceid(mts accidents

(i8 33
54 26
16 8
14 7
10 5

20 10

23 II
i

21)5 100
i

UNDERDESIGN AND DEFECTS IN MATERIALS AND
MANUFACTURE

In an effort, to obtain engines of h)w weight

per unit thrust, comI)onents are designed with

small margins of safely. IIelerogeneous failures

are usually experienced in the early models and

'Ire generally eliminated by iinprovements in

(lesi/n and manufacturing methods. In this cat-

egory are failures fI'om inadequate design, de-

fective materials, imt)r()l)er heat treatment, flaws

in castings, in{u}rreet forging 1)ractiee, improper

wehls, and inclusions in bearing m,tierials. These

1)roblems have been under extensive study by _he

engine m'mufaeturers, but they have received lit-

tle study at lhe NA,qA and are dis(!ussed only to

•t limiled extent, in this rel)Ol't.

WEAR

Wear, in |his (liscussi(m, refers to the delerio-

r:tli(m ()t' rubbin_r surfnces. Although wear may

be a, l)robh_nl in some of the control equil)ment

and fuel-svslem Cmnl)onenls, discussion herein is

limiled to the I)eaving's ()f lhe In'lin rolor. W'ear

<_c(.uI'S l)I'in<dpally on the Sul'fa(ces of the cage in

,on|:_('t wi|h the race and the rolling elemenls.

Because of lhe relaiively low cost of bearings

and lhe I)ossil)ility of eatastrol)hies resullin_ from
l)eai'in/failure, bearings are rel)laeed in tiehl re-

pair and overhaul on in(liealion of only minor

flaws, lIenee, in ('llrl'ent engines, bearings do

not usually run for suiti(,ient time to require re-

1)]iI('elllellt, fOl" llOrlllal wear.

Abnormally high wear rates have been en-

('mmtered when bearing sm'faees are overh)aded,
the flow of lul)ri(,ant to lhe surfaces has 1)een in-

tevrul)ted , or dirt and olher al)rasives have en-
leved lhe lubi'i(mnl. These difficulties should I)e

eliminated by design ellan/es and better hamllin/
of lhe Islet'leant.

1Vhen olher bearing dittieulties are eliminated,

and when in lhe inlerest of economy it is desired

to operale 1)earin/s for longer times, then re-

1)lm'emenI of I)earin/s for normal wear will |)e

ve(luired. Beavin/s can 1)e inspe,qed for wear (m
the basis of llleasllred changes in cle'mm('e (set,

,!h. IX).
CREEP AND STRESS-RUPTURE

17rider a steady load at high temperatures, ma-

terials lend Io creep or deform with tithe and

evenlually lo break. The lime, to failure is ealh, d

534962 61 14
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tile Sll'ess-rul)ture life of the nlaterial. It de-

pends on lhe material, lhe stress, and the tem-

perature. Cree l) and stress-rupture lift, are of

concern in the turl)ine disk and buckets, which

are exposed to ,t comlfinalion of centrifugal force

and high [enll)el'alllFe. 'Flit, attendant 1)roblenis

:n'e discussed in the ehal)lei's on lhese COml)(ments.

In some engines, many failtn'es of turbine buck-

ets lly stress-rupture have been encountered in

service. A variation in stress-rupture life, of its

much :ts 3:1 between ihe hmgest-lived and short-

esl-lived lmeket on tit(, same tut'lfine, has been
elll'llllllt el'ell.

This is atlrilmled lo small varialion_ ill m't-

h, rial conll_Osili(m , struclure, and fabrication his-

t<n'y, which occur in spite of llresenl etrorls to
control these factors.

Stress-rul)tnt'e lift, is very sensitive It) tent-

l)eralure and Mress" snml] retlncli<ms ill lhese

factors otIll realise large ill('l'etlses ill stress-rut)lure

life. The slress-rupture life is the longest life
the llm'kels ('lilt hllve. The actual lift+ Call I)e

realm+ell by such faot<n's as overtenq)erature, ther-

mal and mechanical ftiti_zue, imlmCt by foreign
,,bje_.ts, aml vibration.

In lhe case of the Itn'l}ine disk, the rims 'n'e

_enerally cooled l)y air ]fled from /lie c<mq)ressln"

ill <n'der t<l achieve desired low creep rates and

hi_ll strt,ss-rul)tUl'e lives. Indications of creep

lllll[eF ill( + inlhwm'e of the high centrifugal for,es
etlc_nlntt, red tlt't + increases ill I'illi diameter alld

deformation in tile serrati<Jns which hoht the tur-

bine lmt+kets. Faihtre by stress-t.ttl)ture has rarely

been observed in disks which experienced no

_hnnage from other causes, lIowever, failures

have occnt'red when the disk was overheated, and

als. when tile disk m:lterial was weakened 1)y

imlwoper nmnnfa('tm+e. Faihn'es 1)y stress-rul)-

tllFe llllder il()i'lllttl ctm(lili<)ns nnly 1)ecome 't

lw()l)hqn when ;ltiemt)ls are made l()obtain l<)n+,zer

<)l)erating limes from a given disk than is the

eurt'ent l)ra(.li(,e in military service.

FATIGUE

l'et'iodie fm','es resulting l)rincipally fronl reg-

ular disturbances in the gas flow through lit(+

ell_ille eallse vibralion of such items as turl)ine

Imcl,:ets, ('(mtl)rt,ss(+r VltlleS and l)latles+, 'Iml vari-

(His sht,et-lnelal l)arts exl)oset[ to the gas lh)w.

When the fre(lttent_y <)f the vil)ralory force is in

resonmce with a ll't|tlral fre(luen(:y of a compo-

nent and lhe damping losses are small, high

stresses can result which may cause early fail-

ure c+f llie conlI)onent. Because of the difficulty

of c(miputing the magnitude of these factors in

lhc il_itial design, the m'_gnitude of the resultant

vibratory siresses cannot+ t)e predicted. The vi-

t)ratnry siresses tire usu'llly investigated during

the developnlent l)rogram on an engine.
'l'h_ most serious cause of vibration in com-

l)ressor blades is relating stall. The mech'mism

wher(,1)y rotating stall is set up is disenssed in

chal)_er 1V'. Rot'lting stall t)ccttrs at engine

speeds l_elow 70 percent of rated speed at; low

flight Math mlml)ers and is usually encountered

<hn'il _" a<'<'eler'llioll of the engine through this

speed range. It can occur :It higher rol,ttive

sl)ee(t_ at higher flighi M'l(!h numl)ers. Rotating
stall has been the cause of a mnnl)er of com-

press )r faihtres in service.

l)i:(url)an<.es in the vas fh)w caused 1)y lit('+

wake_ of the nozzle vanes or t>y the spati'd vari-

ation in the velocily of the gases issuin,_ from

the in(lividu:d llllrllers ilnl)ose periodic forces Oil

a +zi_en lm'l)ine l)ueket "ts it passes rel)eatedly

lhrou<_h lhese <listurbanees. In st)me en_zines the

vit)ra ory forces are larve and cause failure of

the I) rules ill a small ft':totion of their design life.

Sheei-melal l)arls anti other parts of the engine

are 1 kewise suscel)tilde l(> faihlre by vibration.

Even less is kn,_wn :tllout l)redictin_ the vibra-

tory +tresses ()f lhese imrts lll:tn of eoml)ressor
and :url)ine blades.

Th, rotor thrust bearing, which is a ball bear-

ing, :s also sul)ject to fatigue. Material in the

viein ty of the sm'faces of llle t)'tlls and races of

the leavin_ is l)eriodieally subjecled to a high

f<wce during relation of the bearing. Since the

lnlls and races are ill nearly l)oint contact, tile

slress:s are very high. ])amage fi'om fatigue

orivil,ales as a small st)alled area on the ball or

race. It usu'(1]y i)rogresses lo ,omlllete f'tilure of

the hL+"tJt'i]lg ill times consideral)ly less than any

l>ra('t (!al lime l)etween 1)e'il'ing insl)eetions. The

faihne of a 1)earin+z ,+an 1)e c',astroI)hi(_. IIence,

1)rote 'lion against this tyl)e of faihn'e requires a

rel)la,'enient: seheduh, and is dis_ussed later.
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FOREIGN-OBJECT DAMAGE

Foreign-object (lanvlge is found in chapter II

to be tile princil)al cause for sending en/ines to

overhaul. The foreign obiec(s comprised mainly

debris drawn into the engine inlet fI'om llle air-

port surface, debris ]eft in the engine, and other

objects which have broken loose within the en-

/ine (see ch. III). These objects, when passing

through the engine, nick or break compressor
and turbine blades. Nicks act as nuclei for fa-

tigue faihu'e and can sh<)rten the lives of eom-

press<,r blades or turl)ine buckets. Broken com-

l)re,+sor 1)lades usually cause a chain reaction of

(:ompressor bl,ule failm'es in passing through

successive compressor stages. (?Oml)ressor t)lade

failure is one <if the most iml)ort'mt causes of

flight accident. Br()ken turl)ine 1)uckels in a

single-stage im'l)ine usually pass out the engine
exhaust nozzle will,rot 'my Ul)l)reciable danrtge

to the en/ine, "dth(mgh lhere are cases where a
lwoken turbine bu('lcet ]ms caused fliTht accidents.

hi chapter ][ it is pointed out lhat out of 205

accidents, which resulted from engine m,dfunc-

tion, 16 were allribuled to failure of turl)ine
buckels. Turbine bucket failure in 'l multistage

turl)ine is much more serious titan in 'l single-

sta_e (url)ine. A t)rol_en 1)ucket in one of the

e'n'ly sta/es of 'l multis('/,de (url)ine c'm destroy

the buckets in lhe laU, r stages and cause engine

stoppage.
The statistics quoled on forei/n-ol)ject damage

were obt'dned oil engines that for the most part

were equipped wifl_ inlet screens. The need is
_hus indicated for more effective screens or oilier

devices for elimin'/tinff foreign objects. Some

of lhe engines were equipped with i'etraclal)le

screens, whi('h dttml)ed collected debris into the
inlet when retracted.

OVERTEMPERATURE AND OVERSTRESS

()vertenlperatures have occurred durin_ start-

in/ as q result of inadequale control 1)y the pilot
or failure of the aulomalic c(mii'ol system. Un-

der these conditions, overtemperature lasts for

only a short l)eri()d of time and affects mainly
the <'ombus/or liner and turbine nozzle vanes an(1

bu('kets. ()w_r(eml)ei'ature can ('ontribme to the

deterim'at i(m of these c()m ponem s (hrou/h buck-

lin_ and lhevmal fati,,/ue I_y tat'teasing" (he tern-

i)eralure gradienls and, also, in some materials

throu/h detrimental oh'rages in the melalhu'gical
slructui'e. The Air Force Technical ()rders call

for insi)ecti(m and overhaul of the turbine after

a I)rescribed ]mmber of overienqierature evenls.

()vertemperature c'm also occur during accel-

eraii<)n of lhe engine if lhe 'mlomatic control is

not functioning 1)roI)erly, particularly, if com-

1)ress,)r surge is encountered.

At maximum engine sl)eed, overteml)erature is

especially serious because it ocem's simultane-

<)usly with high stresses in the |url)ine. As

poinled out in chapter VII, a small amount of

overiemperature can drastically reduce (lie de-

si/n stress-rupture life of the turl)ine 1)ucket.

()vertemperalure at this condition has been caused

1)y drift of the au|omalic-control setting or by

iml>roper seNh_g. In most controls, a maximum

speed limit is used for regulating the m'/xi-
mum-fln'ust condition on the assmnption lhat,

when file nmximmn engine speed is hehl con-

stanI, [he maximum [emperature also remains

constant. Chapter X shows that ,'it, altitudes

above ;15,000 feet. the gas temperalure of en-

gines increased wiI]l altitude in spite of 1he fact

that the engine speed w'ls held constant. The

v,u'ialion of maximum leml)erature with altilude

and fli,dht speed for c<mslant engine speed should,

lherefore, lie determined for the sl)ecitic engine

under consideration 1)efore relying solely on max-

inmm engine speed as a I)erfomnance-lin,i|ing
coal rol.

When drift of the engine speed control occurs

in an en/ine with a c<msiant discharge nozzle

are:t, ihen I)olh overtenlperaiure and overslress
occur which shorten the life of turl)ine lnM<els

and disks m<>re drastic'ally |han overienq)eraiure
al()ne.

L<)c,d overteml)erq.iure iris l)een caused t)y im-

l)roper performance <if the fuel nozzle ()r by

bh)ckage of the fuel sl)ray t>y a carl)on forma-

tion in the combuslor. Local overiemper'llure

haslens the failure principally of the comlmslor

liner and nozzle diaphragm.

A very serious forni of overleml>erature re-

suits from failure of the lurbine disk cooling

system. (?aiastrol>hic faihu'e of a turl)ine disk

has t)een experienced, for examph,, as a result

of overtemperature caused I)y w'u'l>age of the
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disk cooling battles. 'File pilot has no warning

of difficulty from lhis source.

THERMAL DISTORTION AND THERMAL FATIGUE

Thernlal distortion and thermal fatigue are

problenls in such COmltonents as lhe turbine tlOZ-

zles, buckels, and disks, combustor liners, and

sheet-ntetal parts in the hot end of the engine.
17nder sieady operating condilions, large, ten>

peralure gradienls exist in lhe combustor liner

which cause bucMing of the liner and plastic flow.

Ih, l)eated cycles of engim_ olwralion inwdving

starting, accelerating, and stol)l)ing of the en-

gine cause repeated plastic working of these areas

and event ually cracking. ()ften lhese cracks si'trt

at a l/oinl of sIt'ess coneen|ratioll slleh as a hmver
or an air inlake hole in the conibuslor liner.

1 lear I realltlellt to el imimtte residual sl resses in-

troduced during fabrication will reduce lhe tend-

ency for initiating" cracks. Forlunalely, cracks

in lhe comlmstm' liner progress slowly enough

that pieces do not bl'eal( out before it goes lo

repair, where cracked liners tire often replaced.

In only a few of the cases studied have linet_

come to overhaul wilh pieces t)rtil,:en oul. In

these cases the pieces passed llu'ouKh tile turl>ine

wilhout Iweakinff a lm'bine bucket. There was,

however, some evidence of nicking of the 1)uck-

ets, which l)robalfly resulled in reduction of life.

I)islortion of the llame |)atleFIl ill the combustor,

either lhroug'h malfunctioning of lhe fuel svs-
|elll or as a resuJl of accumulation of tile carbon

on the nozzle, ignitor, or liner smfface, creates

hot spots and accelerates lhe lhermal fatigue of

the liner. These problems are discussed in de-

tail in chapter V.

In some engines tile nozzle diaphragnl eon-

sisls of lwo concentric rings with each nozzle

vane wehled at each end to these rings. I)if-

ferences in teml)er'tture on this assenlbly, be-

cause of lhe mmuniform temlleralure 'It. lhe

comlmstor outlet, cause differenti:ll expansion and

distorlions. On repealed cycles of ol)eration ,

cracks al)lu,ar in the nozzle assembly because of

the distortions, hi an effort to provide for ther-

mal expansion, the nozzle vanes in some designs

are altached to one ring, and they slide in 'lir-

foil-shaped sh>ls into the other ring. In nozzle

diaphragms of this type, cracking of the rings
has beell ellCOlllltel'ed l)e,,'allSe of ditt'eren|ial ex-

i)ansio t between the ring and its supl)ort on the

engine frame. These cracks usually originate at
the tniling edge of the slot for the nozzle vane.

At this point the slot has a sharp radius, which
creates 't stress concentration, l)ifferential ex-

Imnsioa in the engine frame can shift the sup-

port f,_i" the tinter ring with respect to th'tt for

lhe ouer ring. This causes lnechanieal stress in

the nozzle dial)hragm , which can hasten failure.

Fm'lmmlely, the cracks in the nozzle assembly

tn'ogt'e_s sulticiently shiwly lha_ they are usually

de/ecl<d in overhaul or on inspection, and they

have l:een a negligible cause for a<!cidents.

In lhe lurbine disk under steady-st'tie eondi-

/ions, a temperature difference of the order of

600 ° F may exist: between the rim and the hub

sections. Fxl)ansion of [lie rim is 1)revented by
i],e ('oider hub and web sections with lhe result

lh'tt l/as|it flow occurs in the rim. ])uring cool-

ing of tile imgine at shutdown, the diree/ion of
the tin rnlal slresses ill the rim is reversed. With

l'el)eal,M cycles of engine operation the rim ma-

terial ,,ventually hardens and cracks. The cracks

usuall: proKress slowly 'rod have been found on

inspeclion of the disks in overhaul. The incep-
tion o!' rim cracks is hastened if scratches exist

in lhe rim. Scratches have ln'en nmde in lhe

rim 10 shearing of tlle bucket retaining pins on
renlov:tl of bucket s front t he I urbine.

lmr:;e teml)cralure gradienls occur ill lurbim_

IlOZZle valles and buckets during transient eon-
ditiom such 'Is startup, acceleration, and shut-

down. The leading and trailing edges of the

lurbin.', nozzle vanes and Imckels follow the gas-

tempeJ ature varialions more rapidly than do the

bodies of these objects wilh the result that large

leml)elature differences can exist momentarily.

For e: aml)le , in a llorlllal start Olt Olte engine, a
differe me of 600 ° F was measured between the

leadin;r edge and lhe cenler ot, a lut'bine buekel

•d)out _ seconds after ignilion. The heavier body

sectior of the bucket reslrains tile expansion (if'

ill(; h,:tding and trailing edges with the result

that p aslie flow lnay occur in lhese areas. When

the bo ly evenlually attains the equilil)rium tem-

perature, the direction of the thermal stress in

the le'ding and trailing edges which have been

plastically deformed is reversed. This phenom-

enon is+ repeqted during su(:cessive cycles of en-

gine ,,1)eralion and has ,.'allsed warping and
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crackin K in tlm leading and trailing edges of
some nozzle vanes and lmckels. These cracks do

not cause nozzle vanes to break, and they are

found in inspection during overlmul. Cracks of

the lyl)e described have been found during in-

speelion on tuI'lfine buckets in an engine in which

the design stress-rupture life of the bucket was

extremely long. In buckets having short stress-
rupture lives, cracks of this type may cause rapid
failure of lhe bucket.

CORROSION AND STRESS-CORROSION

The corrosive action of hot gases on compo-

nents in tlm high-telnl)erature elm of the engine

has forced the use of hi_.h-'llloy materials. These

materials are sufficiently resistant to corrosion

that ordinary corrosion is not an important re-

liability problem. In the interest of using lower-

alloy materials for eombustor liners and other

sheet-met'd I)ar|s, coatings for protecting these

components .igainst eorr<)sion are l>eing investi-

gated. In naval ai)plications, corrosion 1)y salt

water is slill an iml)ortant 1)roblem. 1Vhen leaded

fuels are used, nozzle wines "rod I)ossil)ly turbine

buckets are susceptible to corrosion 1)y lead

compounds.

('ompressor blades made of AISI type 403
stainless steel, which contains aI)proximalely 12

percent chromimn, have been found in some en-

gines to ei'acl_ at the leading edges 17y a stress-
corrosion nlechanisnl. Stress-corrosion erac, ks Call

fOl']ll mmlei for fatigue failures and ean shorten

the fatigue life of tlm compressor t)lades. The

tendency toward the form,ilion of stress-corro-
sion (.racks can be reduced 1)y ohanffes in the

heat treatment of the material--unfortunately,
with sonic saerifi('e in stren_,lh of the material.

(_raekinff of rims of turbine disks has been ac-

celerated 1)y the stress-corrosion lne(tlmnism.

These 1)l'obh, ms are discussed in ('hal)lers IV :rod

VIII.
FUEL-CONTROL MALFUNCTIONS

Of 205 flight a('eiden_s in 1953 attrilmted to

turbojet-engine malfunction, lhe fuel control w.ts

charged with 6g. By fuel eon|rol is me'mr the
fuel and control systen|s. The principal diffi-

culties 'issociated with fuel controls in engines

are (see oh. X)

(1) For engines in which lhe limilinff of the

fuel flow in lhe startinff ol)eration is in lhe bands
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of the pilot, overtemperatures "ire exI)erienced in

starting. The Air Force Technical OMers pre-
scribe limits on tl_.e numl>er of permissible over-

temperatures. An appreciable number of engines
are sent to overhaul because these limits are ex-

ceeded. A reliable inethod of gas-tenlperature

sensing is needed for the development of anto-

malie control of lemperature.

(:2) Cui't_nt controls do not accurately follow

the surge limils during acceleration. Several
factors that make this difficult are: (a) The

limiting fuel flow is a nonlinear function of en-

gine speed and varies with compressor-inlet tem-

perature and I)ressure; (1)) the surge limit on

the eoml)ressor is reduced by distortion of 1he

•iir velocity pr<)lile at; the compressor inlet; (c)

lhe ammmt of inlet-flow distortion changes with

angle of attack, flight speed, and altitude: (d)

rapid and repe'/ted ,_eeelerations and deeelera-

_i<)ns of the engine that occur when lhe con-

trols are r'tl)idly manipulated in some landing

maneuvers likewise reduce tlle surge limit on

the compressor. Too restrictive a limit on fuel

tale durin_ acceleration reduces lhe allowable ac-
celeration rate. Too l it)eral limits result in surge,

which in some instances has led to flight acci-

dents. Tile alleviation of this problem involves

improvement in the control methods, the engine,

and the engine installation.

(3) Drift or iml)roper adjustment of tlle con-

trol at the maxinmm-lhrust condition has per-

milled engine overspeed and overtemperature.

Engines have I)een sent to overlmul because of

damage caused 1)y overspeed and overlemperature.

Also, some fli(ght accidents have resulted from

these causes. Engines are currently limited in

n,aximum thrust by 'm engine speed governor. On

a, natal)or of current, engines studied, the gas

lemi)erature remained nearly constant with con-

slant engine speed up to an altilude of approxi-

mately 35,000 feet and then increased rapidly
with furtlmr increase in altitude, ttenee, over-

tempeI'ature at high altitu(le can occur with a
('onlrol of Ibis type even if the control is func-

tioning as designed. The need for a praeli('al

{enll)eratllre sel/sor 81/d a ]naxinnln] telnl)('ratllre

control is indiealed.

(4) Fl'mmout during rapid deceleration of the

engine in a ]an(liner maneuver may occur and
(,an OallSe :leeidents. FlallleOll|S ('all 'llso o('(,llr
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at high altitudes. Relighting of the engine at
these c,mditions is very difficult, and ill some

cases where it has been accomplished explosions

resulted which destroyed the engine. Improve-

ments in fuel-nozzle design that would provide
K(I(t(I atmnizaiion at low fuel rates wouhl im-

l)rove lhe bhlwout limits of the engine. More

ac('urale duplication of these limils lly the con-

lrol for the wide variety of eon(lRions in which

tlameout ,"m o(.,'ur is likewise required.

(5) Faihn'es of control 'rod fuel-system com-

llonenis 1)y wearou|, fracture, sticking, and clog-

,_in,_ 'n'e an imllm'lant cause of engine malfunc-

lion. Approximately 75 percent of the fuel-

,'mH tel real t'un('t ions a re at I ril)uie(t to component

failure r:nher lhan inadeqwmy of file control
method.

These (litti,'ull ies shouhl event ually disai)|le.u" with
improvements in design 'rod manufiu'tm'e of the

fuel-sysh, m ('()mponenis. '1'o 1)role(q tile engine

frmn such lr(>ubles, an emergency mechanical
override toni r_ll is provided ; however, ditticulties

have lleen exl)crien,.c(| with interference of file

f'dled auiomaiic e()nl tel with the emer/ency con-
tr,)l. The lransiii,m fr()m .mtomati(, t<> manual

('OIl|F()| hllS l[]:.-;(i, I)etql ;1 s()[ll'('e ()[' s()llle [F()lli)]e.

The resl)(msilfility f,/r keeping the engine out

,ff Ihese difficulties is l)resently share_l I)y the

pilot and ihe 'mira,retie control. For example,

in the simplest iSl)e _f ('ontr(ll, only a maximum

entwine sl)et'_l lira|ling device is use_l, whi,'ll aul()-

m:n |,'ally re(hwes the fuel flow. whenever the Sl)eed

exceeds a Sl/e,'iiied v:llue; Ill(, other control func-

ti,ms are in the hands of the pilot. Controls are

now in use whi('h, in addiliml t,i emHroll'ing max-

imum speed, limit fuel flow during acceleration

to av,fid ('ompressor s/all and possess rudimen-

ta W tlamemH (umirol features. I)evelopmenl is

in progress ,)n comrols lhat :lls_, limit maxinmm

tellll)el'aiHl'e and thai have more :l('(_lll'a(e flame-

out ])revenlion fealures.

Addili,mal difficulties with the fuel system dis-
('ussed in the ,'lmpter on eombustors (('h. V) are

(l) Chan/es in the fuel discharge rate to a

('omlu,slor t)v erosion ,,f the dis<,harge orifice or

cl(iggin_ of (he ()riii('e or filter by carl)on or

other (M)ris can ('ause uneven heati)l_" of lhe
,'oml,usio,'s with the l'eSll]l Ilia| S()llle ()i" lhe

_'()lllhllsl()1'.'.; :il'e(JVel'heal e(I.

(2) 1)isiortion of ille fuel-tlow 1)allern in a
eombusior as a result of e'u'bon formalion on the

combustor near tile fuel n,)zzle can cause hot

spots on the fuel liners and turbine nozzles.

METHODS FOR IMPROVING RELIABILITY

The ditliculties mentioned in the l/revious sec-

ti(m are lhe colle('ted lw, ll)lems of a variety of

engines. S()me of lhe prol)h'ms alll)ear in some
engines and have been elindnaied inothers. Some

of ihe l)roblems are common to all ihe en/ines

investigated. They have all been lisled lo indi-
cate the kinds of difficulties that must lie con-

sidered. In tile 1)resent se('ti(m an alleml)t is

made to (lismlss methods for hamllin/lhese 1)rob -

lems. These methods include improvement of

lhe in!lial llroduet and avoidance of failures in

operation tln'(mgh alll)]ieation of inspections, te-

l)latch ent schedules, and warning devices.

The relialfiliiy prolllems and meiho(ls discussed
are su i.ie(.i lo modification wilh time. New en-

/ine designs may reveal failure modes not dis-

cussed in these llal)ers. Al)l)lications thqt invoh'e

long engine lives, such "is (.ommer(d:d transport

S('l'viee, may lwin_s out :uhlilionat Uqles of failm'e.

(?(m_ideral)le inq)rm't, ment in l'elialfiliiy (!an

result from an intensive study of (lesion and

nrnlufl('turin_ melhods. The Lewis laboratory

has n(t lmt(le such a study; therefore, the re-

n,arks herein are lira|led only to some reflections

on lhe:_e subje('Is drawn from the siudies on the

faihn'e me('lmnisms of the ,',)ml),ments discussed.
The qnall :,re,rant (if :tvaiMAe (h.'mnenled evi-

deiw(, _Ul)llm'Is llw l)revahmt imllressi(m ihal pod

inslalhtions (tt' en/ines are less prone io cause
air(q'afl a('('iden_s than en/ines l/uried in lhe air-

,raft ._irm'lure, and four-engine ail'er'/ft o]lvi-

ously ire more reliabh, lhan single-engine air-
1)hines. The l)rol)lems ,if en/ine inst'dlalion ave
not di:('ussed.

DESIGN

The current high-speed airplane is the result

()f tim levelopment of engines of high thrusl per

mlit w,,i_hl and frontal area. The low-engine-

wei/hi re(luirenienl forces design t()ward small
mar/ii s of safely. Bec'mse of the contimml con>

I)etitio_l for flight l)erfornlanee, (h,sign and niale-

rim hnprovenlen(s |lave 1)con utilize(| ]n'in/arily 1o

_)|)tain engines of ]iiTlier l]irusi per unil weight
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and size. At, each stage ill tile deveh)pment, of

turbojet, engines, the designer nmst weigh (he

conflicting re(luirements of high specific (hrust

and high reliability and arrive 'it: a practical

compromise, l{aisin g the (lesi_zn temperatures

and stresses, for exalnl)le, alh/ws (he atl'tinment.

of enginen of higher specitie thrust, but at lhe

sacrifice in life of some of the critical e.niponenin

in (he lie( end of lhe engine.

The trend in engine type han :dso reflected lhe

emphasis on l)erfornian('e ralher than relial)ilily.

The axial-flow conll)ressor has displaced (he cen-

trifugal eonlln'essor , in spile of its much gre,aer

probabilit), for ea(as(rol)hic faihu'e froni f()reigu-

object dalna_e or vibrati()n, for the l)eneli( (if

greater thrust per unit frontal area and efficiency.

In the single-stage turbine, hlss of a furl)the

bucket usually does not. cause extensive dania/e

or loss of thrllst. In lhe newer engines equil)pe(l

with multistage turbines, however, the loss of a

l)ueket in an early (urltine stage can cause exten-

sive (lalna/e to (he en/ine. The tinal <'hi)ice 1)e-

iweel, t perfornlanee 'rod reliability is in the l)l'()v -

=nee of tile user. Ilis (.hot(% ]lowevei', in liiniied

to engine tyl)es eomnier(dally availal)le in (he

thrunt range desired.

Small reductions in operaling (elnl)eralure and

stress lead to large increases in (lesign stresn-

rul)ture lives of turbine buckets. As an i]luslra-

lion, it is pointed out in chal>ler VII that reduc-

tions in operating lemper,llure of 100 ° F alld ill

enghie sl)eed of 4 l)ereeilt in a current-pro(hie( ion-

model engine result i)l a 44-fohl increase ill st rens-

rupture life of tit(,, buckets 'it (he cost of it 6-percent

loss in lhrilst, l)u( with the lie)writ of a 4-1)ercelli

redueii(m in slle(,ilie fuel eonnunq)tion. The ef
feels on lm(d_et life due (o reduc.tions in lenil)era-

tm'e and en/ine spee(l ,ire different if (he I)uckeis

fail 1)y a nie(:hanisni oilier thnn stress-rupt Ilre.

'|'lie =It'll=at liucket life (',ill be eonsi(leralAy less

ih,ul (he ilesiKn >.Iress-rulilure lift, i f (|ill=laTe l)y

theriiial cy('Jin_, fol'eiTll olijecis, or (:orrosioll oc-

CllrS or if severe vil)raiion in en(:ountere(l. The

reductions in life froni these cruises are difficult (o

aniicil)ale. Foreign-ol)je0t dnniage> fin" exluiiph,,

is it chance phellOllielioli nnd can or'till1" ill III1V

time; sinlil,lr]y, the /lanl'/_re (lone t)y viliration

(h,pen(ls on (tie lenTlh of time lhe ellTille is hehl

a( it spee(1 a( whi<'h a lnicke( in in i'eSl)llall('e wiili

RELIABILITY OF TUI{BOJET ENGINES 205

a stron;,_ vil)raiory force. Therefore, a e(/ndition

favorallle to high ol>eraii<mal reliability is ob-

tallied if the llueket is (h:signed to have (1) long

slress-l'llplllre life, considerably loliger l]11111 the

aeeeplal)le discard (hne for tile liucl¢et, and (',29)
low viln'alional slress. Vii)rational sirens can lie

reduced 1)y such nleih(l(ls as reducing the exeitin K

f(irce_ (h.si/ning lhe l)la(le (o ]lave no l'eS(lll:inee

wilh l]ie exeiiin K f(n'ce :it the hnl)<n'iant elig]lie

()pei'aiin(_ Sl)eeds , ,ill(l l)rovi(linK vii)ration (lalnp-

ill K Sll('h ,is sllr(nl(ls in" root danll)illg devices.
(See ehs. 1V linll i'll.) Ullder these eon(litionn,

(l'iliUig'e hlilinle(I l)y foreign objects or llit.l'lii,ll

(!y('iin K will l)r(i_resn lhrouKh tile I)u('ket sh)wly

Itn(I (:all I)e deie('ied ill a scheduled illspeeliOll of

the 1)uel<eis. l{eliallility is further benefited if the

intensity of the cyclic therni,il stresses is reduced.

]f the (lesigner deI>arls fl'Olil the eondilions

ollllilie(| in the fol'e_oilig 1)al'a(_r,i|)hs toward

lii()l'e= severe (ll)eralin 7 <'ondilions ill lhe hllerest

of ()l)laiiiilig greater thrust lierf(n'nutnce, (he lisei"

lllllSt atlelliIH (o i)]ll=lili _(ll)d t)])eralion,ll relialiil-

iiy l)y lilt)re fre(luent inslie(:tions aii(] replace-

lnelils. In sortie recent high-perfomnanee envines

the ]nickels ]lave been designed for lon K slresn-

i'/iptlire life ai/d low vibratory sirens.

1( is likewise easier to obtain high ol)eraii(nlal

relialliliiy Oll (he iurl)ine dink if the critical ,ire,is

tif (lie disk, nluneiy_ the rini ,ultl serrate(1 seelion,

tire designed for eollnide.rably longer stress-

rul)( ure life (]lan the anticipated oper'tting life of
(lie disk. This is done, of course, by eho(>sing

the prol)er eonibinaiion of niaterial, desi/n

stresses, and malerial temperatures. The male-

rim (enlperature etui be deereaned 1)y decreasing

(he c()nll)ustion-gas tempernlure and also by tin-

proving the cooling of (he dlsk. If the latter
nielhod is nsed, the disk cooling syslem lnust_ be

carefully designed so thai the probability (if fail-

ure (if (lie system or of ilnproper installation is

very slnn]]. Until (his is assured, ollerational

relial)iliiy would 1)e improved if a device for

el(her warnin/ of overtemperature of the wheel

rini or loss of wheel cooling airflow were provided.

The disk rinls, turbine buckets, nozzle vanen,

</nd <,onllms((n' ]inern can 1)e cracked by thermal

cw'lin/. T]le tendency for thermal crackin/ of

lhese ('()nll)()nen(s wouhl be redu(:ed if con-ll)unlion

leiiiperli|lires =1nit rate of (einperaiilre (']l'i11_e ill
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transien! operations were decreased. The rate of

temperature rise during ignition, for example,
can he deere'lsed if atonfizati<m at low fuel rales

and ignilor 1)erfornmnce are improved to permit

lightoff with a smaller amount, of fuel initially

in the eomlmstion chamber. Starling the engine

Oil Oli{t ])llrlu0r and then gradually iffnilinff addi-

tional burners will reduce lhe rate of tenq)erature

rise of lhe lurbine buckets. Reduction of engine

acceleration rates and avoidance of sur/e will,

likewise, reduce the rale of teml)erature change.

Rapid telnl)erature drops occur during decrier:t-

lion and shutdown. Meihods for obtaining a

lllore _._radlla] |eillperilltlr(, ehan,_e dut'inff shut-

down should be studied. The temhmcv for /her-

real eraekin V ran be decreased if the lemperatm'e

of the component in decreased by ilnlWoved cool-
in K 1Vhen reliance is placed on reeling, adequate

1)erfornmn('e of the cooling syslem at tit(' it'an-
sient coral(lions of imeresl must be assllred.

Consideralfle increase in the lives of the nozzle

diaphrag'm and the eombustor liner would result

if they were desi_rned to minimize the thermal

stresses imlu,'ed by the large temperature _radi-

mils on llwm. For examl)le _ the nozzle diaphragm
wouhl benelit if the vanes and outer and immr

rinks were permitted to expand independenlly, if

l'e.ffions of stress eoncentralioll such as the sharp
IrailinK-edffe corners ill lhe vane slots ill the immr

rinff were el(re(mired, and if prmqsion for dilrer-

ential expansion l_etwee]l the rings and their

poim s of sut)l)ort on the en/ine frame were made.

Inq)rovements in des(fin and m,tterials tlmt tend

to reduce the temperature differemials in these
s!rm'tures would also be henetieial.

The ,.'ollll)ressor ld'Me should In'desi/ned with

a lar/e strength marffin so that damage from

foreiffn objects or st ress-eorrosion wouhl proffress

sh)wly enough to I)e f,,umt in an inspeelion. In-

creased lhicl{ness in 1)oth compressor blades and
turbine buckets increases the resislance of these

COlllpOlielltS lo ilnl)aet.

Reduclion in the severity of vibrational stress

by the metho(ls described in ehal)ter IV will in-

crease the blade relialfility. Excessive rotating-

stall forces should be reduced by desi/n ehan_es.

These are likewise discussed in chapter 11,".

The fati/ue life of thrust hearings must: like-

wise be eitrefully chosen to provide il reasonable

replaeen.,nt lime. The fatigue life shouhl l)e

suttici0ntly high so lhat, after alh)wanee in made

for lira scalier in bearing l)roi)erlies and other

rower' aim los, a prac! ical I'eplaeement time results.

The fatigue life of bearin_zs varies inversely as

an e._l)onential fimetion of the slress and can,

therefore, be appreciably increased by deereasing

the st "ess. The stress, of course, can be decreased

t}y dedgning more ru/ffed thrust, be.trings or hy

(listri)ulin K tim thrust load amon_ several
bea rings.

Failure of the lubriealion syslenl can preeipi-

tale hearing failure and ealaslrol)hie f'tihu'e of

the eu/ine. Evidence obt'tined on engines in

which the hll)rie,tlion syst('lll W:IS (lainaffed by

/unlile indieale_l that lhe bearings on some en-
gines conlimled Io function for sullieienl lime to

permi_ lhe 'til'phme io return safely io its base.

Be:u'in_ and ]uln'icant systems should be designed

t,) lW; vide this reserve in life to 1)ermit lhe en/ine

lo operate for sufficient, time for adequate emer-

_._ell(!y illeilsllres to l)e laken.

In he (h, sign of e,mtrols for iml)roved relia-

lfility, there fire [we opl)osing fealllres that re-

quire consideration :

(1) The more elal)orate controls, when lhey

work l>roperly, reduce the hazard of pilot error,

Imrtie,.flarly when he is i)reoce.upied with flight
.peral ional problems.

(2) The more elaborate controls have a higher

proba _ility of eonlrol component failure.

At, ,,very slqge in [he development of the art

()f col;trois, an Ol)timmn division of resi)onsil>ility

l_etwe,,n pilot and amomal ic control for maximum

reliablit 3, exists. The more advanced the state

of the ari, the /rearer the responsil)ility that can

1,e 1)1:ee(lon lhe automatic control. The ehoiec

of lhi_ division of resl)(msibility depends on lhe

tyl)e _ f airplane service involved. For example,

in tra lSl)Ort operation, where 1he flight plans are

I'OIIIilI,_ all(l perf(wlllaltee re(lllirelllOllts lliOl'e re.-

laxe(1, more of the resl)onsibilily can be placed

in the h'mds of the pilot than in the case of the

li/hlev airplane, where ral)id aeeeleralions may

l)e required and where t]m pilot may 1)e involved

in e(mil)nt nt a lime when engine conditions are

('hart,7 I/_ rapidly I)eequse of the eonahat m'umu-

vers. The elirront trend is tov,ard the more elal)o-

rale illltOiiiatic COlltrols to relieve lhe pilol of
niueh ,)f lhe control bur(]en.
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Reliability of the engine wouhl be improved l)y

lhe following iml)rovements in tlle control func-
tions :

(1) More accurate acceler'ttion control. The

improvelnent of acceleration control requires, not
()lily lllore accurate COlTeSl)ondence /)etween l lie

control adjuslmenl ,rod lhe compressor surge lim-

its, 1)ut also iml)rovemenl in the design of the

en_sine "rod engine inslal]ation. In view of the

c(mq)lex relation between surge limits and engine

and flight conditi(ms, the problem of acceleration

control wouhl be greatly simI)lilied if a method

of directly sensing imminent surge were devel-

oped.

(2) Addit ion of a reliable max imum-t empera-
tin'e-limit function to the control.

(3) More accurate, flameout control.

INSPECTION

The frequency of insl)ection and rel)lacement,
and hence the cost of maintenance, can be de-

creased by reduction in the severity of operating

conditions. In any 1)ractical compronfise between

nmintenance cost and engine thrust, the need for

considerable inspect i(m can be anlieipated. The

engine and installation shouhl 1)e designed io

facilitate these inspections.

Inspection in manufacture.--Because of the greqt

cost of modern jet. engines and the 1)ossil)ility

lhat a tempo]ran! failure can cause loss, not only

of the engine but also of the airl)lane and lmS-

sengers, thorough testinff of the critical coml)o-

nents of e'mh engine is justitled.
I)is(.ussion of the COml)lex 1)rol)lem of the in-

sl)ection of nmlel'i'ds and linished 1)ro(lucts is

beyond the scope of this report. Tesls indicative

of the resistance of the component to the impor-
tant failures discussed should 1)e included in the

sl)eciti("ttions and nutnufacturin/l)rocedures. Ex-

amples are given in chapters VI, VII, "rod VIII.

By good inspecli(m to eliminate imperfect ma-

terial aml by good control of the f'd)ricalion

l)roeesses, the lmmber of defective parts of lhe

engine may be hehl to a very h)w value, tIow-
ever, a finite percentage of flaws will probably

pass un(letected. Furthermore, difficulties such as
misalinement of components c:m 1)e introduced lly

improper engine assembly. Therefore, every en-

gine shouhl be sul@cted to a |rial-run period in

which some of these defects may be found and

corrected. Tile Irial run shouhl inchlde lest con-

(litions and maneuvers that will bring out per-
formance difi%ulties such as severe rotaling stall

and flameout, and also lhe adequacy of the control.

The delay of flight application of an engine

if) a time when it. is completely developed is not

feasible. Furthermore, the different aircraft ap-

1dications of the same engine have their special

lwol)lems, tience, a period of "debugging" dur-

in/ lhe early tlight history of a new engine, or

of an old engine type in a new application, can

l)eanti,:il)ale(1. I)m'ing this peri_xI, it is iml)or-
lamt that the mamlfaeturer and user treat the

early flight ol)erations as part of the develol)ment

program, and that they set, up procedures to ex-

l)edite lifts 1)rogr'un with minimum hazard of

flight accident. This requires close cooperalion
l_etween the manufacturer and user.

Inspection in servicc.--The inspection procedures

thai can lie set; u l) to 1)revent, a flight ,incident by

failure of a COml)onent depend on (1) the cause

of failure of the component , (2) the speed with

which tile COml)onent proceeds from indication

of incipient failure to tinal faihn'e, and (3) the

seriousness of such a failure with regard to its

tendency to cause at flight; accident.

Inspections scheduled on time basis.--For some of

the failures the grace time from first, indication
of failure to tin'tl failure can be sufficiently hmg

lhat insl)eclions may be scheduled to detect lhe

dilticulties. In this category come such items as

wear of 1)earings and thermal cracking of con>
bustor liners and transition pieces, turbine disk

rims, nozzles, and buckets. If, for cases that fall

in this caiegory, the grace time is too short for a

praclical inspection I)eriod, this condition shouhl

be corrected by changes in design or operating

c<mditions. Since inspection of these componenls

requires al)lU'ecial)le disasseml)ly of the engine,

,heir inspection requiremenls should be studied

and 'm integrated pro('edure devised. Sehedulin/

of lhis major insl)eeli(m to coincide with desired

major overhaul times w<>uhl, of course, 1)e highly
desirable. Whether lifts can be done depends on

the quality of the engine :rod the severity of tile

service <)perating conditions. I)uring the sched-

uled inspection, examination should also be made

for fm'eign-ol)ject _hlmage. Ih)wever, 1)e('ause the
time of o<'currence of foreign-ol)ject, damage is

unpredichd)le, and because the consequences may
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be catastrophic, erery effort shouht be made lo

nlinimize the danger of foreign-object damage

and to check for evidence of foreign-object dani-

age on a preflight basis. _lVhen extensive inspec-

l i(m of the c()nll)ressor blades for forei_'n-object

danillge is inll}ractical , 't limited inspe('tion, in-
volving the screen and the early COl[ipressol.' st _lto]'

and rotor stages, may lie feasible wiihom disas-

senll)ly and nlay ,_really reduce the l)rollal}ili[y
[}f a failure froni this source.

Inspections scheduled on basis of c0ntingency.--In

this calegory eonie failures which may lie con-

sidered accidental. Very rapid daterioratioll of

lhe life of the coliil)ol)eilt$ ill the hot end of the

engine can result frail( overteniperaiure or over-

speed. Inspection of the lmrts in the ]lol ell(| (If

the engine should tie made when overiemper'aures

and overspeeds of prescrille(l intensity and mini-

l)er have been experienced, as is the practice in

niilitlu'y servi('e. The reli(irthigof tliese inei(lei)t,_

]s eurrelillv left lo the pih)l. Aii "UllOliililie i'll-

corder which _ives (he lenil)oralure and engine

Sliced as "t fllncli()ii ()P time wouhl provide il liili(']i

lllOFe aCellrale ]}asis for schedulii)g insl)ec(iol),_.

Not only lhe liieliii conilmstion gii$ teliil)erallire

but, :lisa almornial (|istrilmtions in lenil/eralure

should lie indicille(1.

Insl)eciion of llie lurl>ine disk sliouhl (lisa b0

inade when lht, re is ]ii(]iol/l]on of difficulty with

tile turliine wiieel (,()oling sy,'_iein. Evi(lenee of

excessive rim growth and changes in hardness and

iiii(!roslrii(qilre liiay lie ii_ed (is ill(li("liiolis of (|t,-

lerioration. Inspection of (he bearinKs and the

hibricalion systen) should lie 1)lade w]ien lhere is

evidence (if hlhl'iCaiion-syslenl failure luld wlieil

excessive :liii()liiils (if lileiallic l)arti(qes are (le-

iecled in the oil tillers.

Flight checks and warning devices.--Faihu'e of

the control system ill it crucial maneuver m_y

cause a llight accident. For exanll)ie; t'llihlre of

ilia llecelei'iilioii COlltrol diirilig a ]aiidiilg or :1

flight refueling operation wheii the ihrolile lllaV

lie "joek%'ed'" at reduced eliTiiie speed lll'iy per-

niil the engine Io experience destruclive COill-

l)ressor _iii'Ke, When raliabiliiy of (he eonlrol

is it l)rol)leni in iuiv sl)e(!ific, eliTine _ the pilot (!l/n_

pri(ir t(i enlering lille a ('i'ilioal liilinellver_ ehec]<

Ilia operaiilm (if ilia t'on[rol in the exllecied enTil)t,

coil (I i | ]()ii.

Moi iloring instruniei)ialion ill lhe cent rol, fuel,

]Ill)r((' ult> ili)(I turhhie, ('oolin7 s vslelllS would Wal'll

the 1)i()I of iroub]e in l]iese systeiii,%

REPLACEMENT SCHEDULES

]{epiacelilelllS /ll'e_ ()g ('()llrse_ lIHlde, Wlllql il)sl)e¢-

liOllS ii(|ic'ate ii'l'el)lll'abi(_ daliiage to any (if t he

coliipoliellts, iIowever_ there aI'e SOli)e compo-

nenls l'or which l]ie time belweei) tile appearance

of incipient (|'lliuige aiid lha tJiia] f:liilll'e of t].'

COliipolielil, is lliilch less than l]ie lime llelweeli

sciie(hih,(1 insl)eciions. In these cases il is lleee,-i-

Sill'), t,) 1)rovi<le a rel)laeell/elit schedule ill Ol'del"

l(i liv(id fllihu'e of lhese (!onip(ments ii) tllgill.

('onip_.lienls lhltt fail by si ress-rlii)lllre or fill igiie

inec]ui i]SliiS COllie tili(|er lliis hea(|ili7. Tiirl)iliC

disks, turbine l)uokets_ alld thrust 1)earhigs al'e.

sl)eciti,: items t]lat ll)ust be coi),_idered. If (he

stress-t'upture lives of the turbine buckets and

disks lind tile fatiKue life of the tlirllst l_elu'ings

lll'a SO great: ilia/ these itenis Call ])t_ exl)ecled 1o

fail b) other CaltSes long before they reltcii llieir

life Ill iits_ lhen the setlin K of these life liniiis i,_

not ]liportlu)l. i[owever; shou](l l]iese oiher

(_Itilses of faihu'e lie largely eliinilulte(| so tilat

sortie (;£ these ('Oil([)el(el(Is begin io approach lhe

stress-i/iptlll'e all(| faligue life ]]lii]ls_ Ihen it is

iinliorlant to set uli it rep|acelnent s(']le(hile llilse(I

((poll lie best available exporinieniit] data eli the

lives. T]Io ren)owll linies should make allowance

t'OF till' scatter ill 1)el'i'oriliali(_e (if []iese (tOlllliO-

nen/s lnd shoul(l lit(iv(de sulli('ieilt nliirgills of
safety for ui)('erilliliiie.s in the ol)eral i()l)al eolidi-

lions 'ncouniere(t lly tim hidivhh)'tl engines.

IViieil I1 l'ei)liiceiiieiil s('])e(liile is set, ll l) for "1

('(Inil)o:ieili _ Ii systeni for k(,etlilig lrael,: of lhe

operittln K tinie eli Ilia COilipoiielit is lle('esSltl'y.

ENGiNe:RECORDS

l{eccr(ls thai would assist in schedulhl_ iiisl)e(,-

lions li id rel)laeenients life

(1) Ol)erating time (ill thrust 1)earings for

schedu big relihleenlont for fatigue

(7) ;)pel'il|ilig tillle Oll tlll'l)iile disks Iilld Imck-

els for selieduling l'el)]a(!eliielil for stress-l'lipilll'e

('i) Extenl (Jill| (llil"ll}()ii of overtelilpei'alllre

and ovi!rspee(l for sl)e(!ial insl)ections :ul(l repla(:e-

lllailts

(4) Nunll)er of starts, ile(!eleraiions> 'in(1 siol)S

for so]l_dulin 7 h_speol ion of (_()nipoiielils ,_libje(',|; lo

l]lei'nlal crack ill 7
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A continuous re('ord of _as |eml)eraIure and

engine speed ag;tinst lime would I)e extremely
vahmlde in providing the preceding data. Some

devices lo (1o lllis 'Ire under development at this

time. If reliance ix placed on l)ilot reI)()rls, as is

ihe prevalent 1)racli_:e in milil'_ry service, act:u-

rate gas-temperature and speed in(licators should

I)e 1)rovide(1.

The prol)lem of keeping records on componen!

lives is _implitied if (.omponenls are reasseml)led

imo the same engine in overhaul.

OPERATION AND REPAIR PRACTICES

There is a natural lendency to try to fit lurlx)jet-

engine operation and maintenance 1)r'_ctices
into the pattern eslal)lished for the re('il)ro('alin7

engine. Some fundamental differences between

these two engine types exist, however, which must

be consi(lered in setting these pr'(cfi('es. The lur-

1)ojet engines are nmch more suscel)tible to un-

pre(liehflde, and in some cases eq! astrol)hic , f'uhu'e

from such sources as foreign-object damage, over-

tempera(ur( b (>verst ress, and thermal and mec]m n i-

cal fatigue.
The frequency of foreign-object damage can be

reduced by screens or other proteclive devi('es, by

removal of (let)ris from airl)ort rllllWays_, a11(l I)V

r'u'eful m'dnlenance 1)raclices. The frequency of

overtelllpera|llre_ ()veI'stress, :llld Sllt'ge Cqll ])e re-

duced 1)y improved comrols and by more exten-

sive pilot lraining. (h'ee l) and lhermal-faligue

dillieullies can usually be reduced Otl a given en-

_ille 1)y re(llleillg ol)era|illff t(qnt)eratllres all(l

s[ resses.

The military services press f()r high thrust per-

formance, and lherefore many of lhe hotIend

('Oml)onent s experien(!e short lives. The Air Forca

has obtained a large reduction in maintenance

cost and "en_ine-ou_" time 1)y l)ermilt ing consid-

erable maintenan('e at the ol)er'_ting 1)ase. The

operating 1)ase ix now permilted to replace all

hot-end conlpollenls "tn(l bearings, and considera-

tion has been given to including compressor l)lade

rel)lacement.

It would 1)e highly desirable in commer(:ial

operation to achieve overhaul times comparalde

with those ol)|ained on reciprocating engines. The

user will have t<> determine for each engine type

the l)esl COml)romise 1)etween lhrust 'rod comp<)-

nent life. "When this compromise involves corn-

l)onent lives less |han desired limes to overhaul,

a slu(ly should be made to establish minor repMr

i)rocedures that wouhl result in reduced cost and

envine-out lime.

ADDITIONAL INFORMATION NEEDED FOR IM-
PROVEMENT OF RELIABILITY

Exlensive research eft'errs are I)eing nm(le to

improve the strength and performance of all the
('rit ical engine (!Oml)onenls, which shouhl toni rib-

ule Io iml)rovemenl in reli'fl)ility. These research
1)r.grams are nol discussed. In each chal)ler of

|his report the need is poinled out for sl)e('i;d

in format ion asso('ialed with the l)'lrlicular I)rol) -

lems of reliabiliiy discussed and this is sum-
marized here. Information is needed on

(1) Failure mechanisms. Some of the failure

meelvmisms for several of the components and the

inituen('e of the important varial)les on time to

failure are not mMerstood. For example,

(a) In the failure by lhermal cycling of such

('Oml)onems as coml)ustor liners 'rod turbine disks,
1)uckeis, and nozzle vanes_ the influence of lhe

leml)eraiure-slress history; lhe object shal)e, and
lhe material l)rol)eriies on the lmml)er of cycles

Io failure is not sufficiently understood. This in-
formation would lead to remedial measures 'm(t

lo pro(.edures for avoiding failure from this difli-

(.ulty in ttight.

(b) More informal ion is needed on the effects

of overlemperalure and overstress on lhe stress-

rui>iure life of tm'l>ine lmckets and disks at nor-

m'd conditions. This inform'ltion would permit

setting more realistic eriteria for removal of

Imckeis and disks for overieml)eralure and ow, r-

sl ress.

(2) Time from first indication of failure t.

final failure. A knowledge of lhis grace time is

needed to set u 1) inspeclions and p'u'ts rel)lace-

merit s('he(lules for each engine type of interest.

l'-nder this heading come such ilems as

(a) The time from the iirst appearance of

cracks pro<hwed 1)y thermal cycling to failure of
t url)ine lmckels and disks.

(b) The time from lhe first 'q)I)e'mmce of a

faligue pit or other damage in a 1)e'lring to final

bearing failure.

(3) l)efect tolerance. Information is needed

on the magnitude of the following ('Oml)onent
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defects that may 1)e tolerated before safe ol)era-
lion is jeol)nrdize(l:

(a) (?omt)ressor 1)la(h, and turlJine l)ucket nicks.

(b) Bearinlz scratches.

(4) Methods of detecting daniage. Damage by

such mechanisnls as stress-rupture or fatigue is

not now (le|ectal)le until the sul)ject is very close

lo failure, ttem'e, rel>lacenient of thes6 objects

cannot I)e based on evidence of (t:nnnlze in it

scheduled insl)e(.tion. These components ('ouhl

1)6 l>laced on an insl)ection schedu]e if niethods

were available for indicatinlz the aniomit of life

remailfinK in the (.()ml)onent.
(5) Warning devices. The faihn'e of a coin-

1)orient in ihe fuel, ('onir(d, lubrication, or lur-

bine cooling S)'S{elllS ('till 1)l'e('ii>itllie a caia-

sirol)hic failure. V(arnin(_ (lex ices in lhese sys-

ictus would l)ermit the pilot to take 1)reventive
a<'tion. In l>articular, infornultion on methods of

sensin_z c(mflmstion-_as hmq)eraiure would hel I)

in the solution of the prol)lem of overtenll)eralure

control. Inforniati()ll on a method of detecting

innninenl surlze would assist in the (levelol)nlent
(if better acceleration controls.

(6) Meihods of preventing a colnl)(ment f'dl-

ure froni causing engine faihn'e, l;nder this
helulhig conie such items :is

(a) Me]hods (if extending (ll)el'atill 7 lillle of

bearing, after i'aihn'e of lnl)ricating system, to

1)ermit emergency measnres to be taken.

(I)) Methods of disposing of broken conll)l.essor

and tnrlline lilades l(i reduce the l>rol)nl)ility of :l

chain renclion of failnres ill suc('essive stages (if
l]iese c()nii)()nenls.

((') Mellio(ls of localizing lhe effecls of faihlre

(if a ('ontrol-svsteni conll)onent iti ol'der to avoid

('ndangering lhe engine.

(d) Melhods of reducing lhe Iirolml)iliiy of

(laliulge to the airl)ialie sli'li('tllre iili(I il(Jjacelll
engines liy it tllr]iille disk l)nrsI.

(7) Mel|iods (if reducing foreign-el)joel (]aln-
li¢e. Ad(litional infornuilion is needed eli the

design of screens lllid other devices for inli)rov-

ing protect ion il_,linsl foreign-elliot: damli_e.

(8) Methods <)f designing ]al'ge Stl'll0ilti'es

whieh tire siillject to lelnl)erlilllt.e difference io

:lvoid dislortion 'hid er<'ickin_. Tills information

wonid i)ei.iiiit iinl)roventent in liie life of su<!]i

ilents ils COlill)llStOf liners, nozzle dilii)hi.liglll_ ,, an(1

cllg]lie fl'tlliies.

CONCLUDING REMARKS

Th,, stlttistics ()it lhe overhaul of older models

()f tu+'l>ojet engilies re,teal that it lill'Te lIIllllbeF of

])at'is were rei)litced at fillies less than desired

fillies for lilt(jot over]li/ll]. This Siillfltion lllay be

inil)r(,ve(l in engines of ll(_wel" design. ]iowever,

i lie (Tesi_ner it]list it]like (.onil)rOlilises belween

l]ie emil]cling reqnirenienis of ]ii_|i lhrnsl, per-

fOl'llli lice Iilld relial)iliiy, llence, ii ix l'ellsollal)|o
t(i exr)e(,t ilia: there will 1)e a re.,.idne of ileins

with lives sliorter t]ian desired or with sinlt]l

Illill'_]llS (if sitfeiy ill st rellgth. The (lesiKner IllllSt

conle:id wilh snch 1)rolilenis Its tile finile stress-

rnl)illl'e life of inrlline lmcllets and disks 'lnd tile

linile f:tli_lle lift, of tlirnst ])eili'ill[S lind eOlll-

l>ress_,r blildes.

The strenglh of llle ellgille COlll[)OllelllS Ct/ll he

lilil)rcdictal)ly reduced ]ty such incidents ]iS ('l)

forei_.n-olijec| (l:lllllige> which lllll), ('llllSe catil-

sirol)hic fllihlr6 of conil)ressor l)lades and tnrbine

liil('ke+s; (7) |het'lnlt] cyclin 7 llss<lCiilled with

still'li+lg, Itc('elel"itillg_, l/lld sl<)l)])ill _ of tire en-

gille, which can cause ,wacks lo .tl)l)eln, in such
iienis :is <'onlbusior ]inei's and tlirl)iiie nozzle

'i':ili('S. lnl<'kets, liIld disks; ('i) viin'alion of (!oni-

I)res:(i' lda(h,s till(| lllrbine liuckeis CllllSed liy

hohlh g l|ie eligille ill it sl)eed :ll wiihqi Sll'Olig

vil)rillorv forces illld l'eSOlllillCes exisl: lllld (4)

overhnlI)erature, l/lid overspeed of the engine by
niilifnnciionin_ or in.ldeqnncy of tim antont<'/tic

contr(ls, or niishilndling of the engine> w]licli
C:lll draslicillly shol'ten tile lives of coml)uslor

liners tnrbine 1)uckels nnd disks, nnd nozzle vanes.
The turl)ine l)uckets lind disks shoit]d 1)6 (|e-

sib_iie( for loiig slress-rul)Inre life in order lit]It

(lefect-; froni CallSeS snch ]is t]ierni'll cracking will

|)l'(igl',,ss slowly elion_'h to tierii_lil detect ion. Litrffe
viln'lll )ry stresses wonhl tend to accelerate failnre

gl'etlll¢, wileli (]efe('|s o('(!11l'> tlllll, ]lellee> S]lOllid

lie av( :(led by proper design.

Eve!l w]lell |he engine is c(-)ltservlllivelv tie-

signed, tile inll)rovenlent of operation,tl reli,dill-

ii.v re luires scheduled insl)e<'tions and replace-
menis, warnin_ devices, and inst runlentat ion.

Sch,,dllled ilisl)eciiolls are required for snch

iiems as thermltl <'rackin_ of turlfine disks and

lmckels, nozz]e vanes, and conibusior liners:

foreign-object daliiage of c<)nli)ressor 1)l'/des and

turl)in+ _,1)uckets; 1)earin_ wear: and hill|function-

in, of fue],lul)rication_nnd conlro] sysienis. Tile
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eugine and installation should l)e designed to

facilitate the insl)eelion. 'File frequency of in-

spection will, of course, depend on the specific

engine design :uld the severity of ol)er'llion.

There are some items for which an insl)eclion

schedule is not adequate, because the time 1)etween
the first indication of deterioration and tinal fail-

ure is usually shor|er than any reasonable lime

between inspections. This calegory includes fa-

tigue failure of thrust l)earin_ and si ress-rul)lure
fidlure of lurbine buckets :rod disks. In 'm

engine designed primarily for reliability, the
lives of these coml)-nenis can be cousideral)ly

longer than the 1)tactical discard times, and they

impose no s(_he(luling l/r()l)lem. Ih)wever, if ihese

components 'ire l)ressed by Ihrus(, l)erf()rmance

re(luiremen(s 1o operate at (.ondi(ions which give

shorter lives, (hey re, luire a rel)lacenwnt s(_he<l-
tile whi('h is 1)ased on statistics on their lives. A

system for re('ording (he ol)erating times of lhese

(,omponeu(s is required in order (o al)l)ly (he

rel)lacemen( s('hedule.
F'dlm'e of systems su(_h as the turbine disk

cooling system, the lul)ri('ation system, the fuel

system, and (he ('on(vol system c'm cause (.a(a-

strophic failure of the engine. I)evices which
will w'u'n (lie 1)ilot, of difficulty in these systems

will l)ermi(: him lo lake preventive measm'es.

Compressor rotating s|all em:(mn(ered during

acceleration of (he engine h'is been responsible

for the very r:q)i(l fatigue faiha'e of eoml)ressor

I)la(les. The severily of vibrations from total in/

stall can 1)e reduced bv (lesign changes that have
been discussed.

()vertempera(m'e and overspeed have l)een re-

Sl)onsil)le for the failm'e of the various compo-
nents in tile hot end of (he engine, su('h 'Is (he

tm'bine 1)uckeis and disks. I)iflicully has also

l)een exl)erieneed from surge during acceleration.
The automatic (.ontrols should l)e improved (o

handle more effe('(ively (he conditions in which

overIeull)eral|ll'e 'till| SUl*_!._(;may o(_cIlr.

The reeor(ls 1)resenled showed that. failm'e of

(he fuel system "rod control system is (he largest.

cause for ac(q(len(s in flight. Therefore, i( is

essential, in "uhlition 1o design improvement, that

a. me(hod ()f l)refligh( and inttight checking of

these systems 1)e worked ()u( and (ha( warning

devices 1)e deveh)i/ed.

For iml)rovemel_t in ol)era(ional relial)ility, "ul-

di(ional information is required on such items .is

t'ailm'e mechanisms, methods of (le(ecting incil)i-

ent failure, warning devices for malfunc|ioning

in the syslems_ methods of 1)reven(inK component

failm'es from 1)ecoming catastrophic, and meth-

ods of redu('in/ foreign-ol)je('( damage.




